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Preface

Having been involved periodically for many years in both teaching and research in
acoustics has resulted in numerous sets of informal notes. The initial impetus for this
book was a suggestion that these notes be put together into a book. However, new
personal commitments of mine caused the project to be put on hold for several years
and it was only after my retirement in 1991 that it was taken up seriously again for a
couple of years.

In order for the book to be useful as a general text, rather than a collection of
research reports, new material had to be added including examples and problems,
etc. The resultis the present book, which, with appropriate choice of the material, can
be used as a text in general acoustics. Taken as such, it is on the senior undergraduate
or first year graduate level in a typical science or engineering curriculum. There
should be enough material in the book to cover a two semester course.

Much of the book includes notes and numerical results resulting to a large extent
from my involvement in specific projects in areas which became of particular impor-
tance at the early part of the jet aircraft era. In subsequent years, in the 1950’ and
1960’s, much of our work was sponsored by NACA and later by NASA.

After several chapters dealing with basic concepts and phenomena follow discus-
sions of specific topics such as flow-induced sound and instabilities, flow effects and
nonlinear acoustics, room and duct acoustics, sound propagation in the atmosphere,
and sound generation by fans. These chapters contain hitherto unpublished material.

The introductory material in Chapter 2 on the oscillator is fundamental, but may
appear too long as it contains summaries of well known results from spectrum analysis
which is used throughout the book. As examples in this chapter can be mentioned an
analysis of an oscillator, subject to both ‘dynamic’ and “dry’ friction, and an analysis of
the frequency response of a model of the eardrum.

In hindsight, I believe that parts of the book, particularly the chapters on sound
generation by fans probably will be regarded by many as too detailed for an introduc-
tory course and it should be apparent that in teaching a course based on this book,
appropriate filtering of the material by the instructor is called for.

As some liberties have been taken in regard to choice of material, organization,
notation, and references (or lack thereof) it is perhaps a fair assessment to say that
the ‘Notes’ in the title should be taken to imply that the book in some respects is less
formal than many texts.

In any event, the aim of the book is to provide a thorough understanding of the
fundamentals of acoustics and a foundation for problem solving on a level compatible



with the mathematics (including the use of complex variables) that is required in a
typical science-engineering undergraduate curriculum. Each chapter contains exam-
ples and problems and the entire chapter 11 is devoted to examples with solutions
and discussions.

Although great emphasis is placed on a descriptive presentation in hope of pro-
viding ‘physical insight” it is not at the expense of mathematical analysis. Admittedly,
inclusion of all algebraic steps in many derivations can easily interrupt the train of
thought, and in the chapter of sound radiation by fans, much of this algebra has been
omitted, hopefully without affecting the presentation of the basic ideas involved.

Appendix A contains supplementary notes and Appendix B a brief review of the
algebra of complex numbers.
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Chapter 1

Introduction

1.1 Sound and Acoustics Defined

In everyday conversational language, ‘acoustics’ is a term that refers to the quality
of enclosed spaces such as lecture and concert halls in regard to their effect on the
perception of speech and music. It is supposed to be used with a verb in its plural
form. The term applies also to outdoor theaters and ‘bowls.’

From the standpoint of the physical sciences and engineering, acoustics has a much
broader meaning and it is usually defined as the science of waves and vibrations in
matter. On the microscopic level, sound is an intermolecular collision process, and,
unlike an electromagnetic wave, a material medium is required tocarrya sound wave.!
On the macroscopic level, acoustics deals with time dependent variations in pressure
or stress, often cyclic, with the number of cycles per second, cps or Hz, being the

frequency.

The frequency range extends from zero to an upper limit which, in a gas, is of the
order of the intermolecular collision frequency; in normal air it is ~ 109 Hz and the
upper vibration frequency in a solid is ~ 1013 Hz. Thus, acoustics deals with problems
ranging from earthquakes (and the vibrations induced by them) at the low-frequency
end to thermal vibrations in matter on the high.

A small portion of the acoustic spectrum, =~ 20 to = 20, 000 Hz, falls in the audible
range and ‘sound’ is often used to designate waves and vibrations in this range. In
this book, ‘sound’ and ‘acoustic vibrations and waves’ are synonymous and signify
mechanical vibrations in matter regardless of whether they are audible or not.

In the audible range, the term ‘noise’ is used to designate ‘undesireable” and dis-
turbing sound. This, of course, is a highly subjective matter. The control of noise has
become an important engineering field, as indicated in Section 1.2.6. The term noise
is used also in signal analysis to designate a random function, as discussed in Ch. 2.

Below and above that audible range, sound is usually referred to as infrasound and
ultrasound, respectively.

LSince molecular interactions are electrical in nature, also the acoustic wave can be considered elec-
tromagnetic in origin.
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There is an analogous terminology for electromagnetic waves, where the visible
portion of the electromagnetic spectrum is referred to as ‘light' and the prefixes
‘infra’ and “ultra’ are used also here to signify spectral regions below and above the
visible range.

To return to the microscopic level, a naive one-dimensional model of sound trans-
mission depicts the molecules as identical billiard balls arranged along a straight line.
We assume that these balls are at rest when undisturbed. If the ball at one end of
the line is given an impulse in the direction of the line, the first ball will collide with
the second, the second with the third, and so on, so that a wave disturbance will
travel along the line. The speed of propagation of the wave will increase with the
strength of the impulse. This, however, is not in agreement with the normal behavior
of sound for which the speed of propagation is essentially the same, independent of
the strength. Thus, our model is not very good in this respect.

Another flaw of the model is that if the ball at the end of the line is given an
impulse in the opposite direction, there will be no collisions and no wave motion.
A gas, however, can support both compression and rarefaction waves.

Thus, the model has to be modified to be consistent with these experimental facts.
The modification involved is the introduction of the thermal random motion of the
molecules in the gas. Through this motion, the molecules collide with each other
even when the gas is undisturbed (thermal equilibrium). If the thermal speed of the
molecules is much greater than the additional speed acquired through an external
impulse, the time between collisions and hence the time of communication between
them will be almost independent of the impulse strength under normal conditions.
Through collision with its neighbor to the left and then with the neighbor to the
right, a molecule can probe the state of motion to the left and then ‘report’ it to the
right, thus producing a wave that travels to the right. The speed of propagation of
this wave, a sound wave, for all practical purposes will be the thermal molecular
speed since the perturbation in molecular velocity typically is only one millionth of
the thermal speed. Only for unusually large amplitudes, sometimes encountered in
explosive events, will there be a significant amplitude dependence of the wave speed.

The curious reader may wish to check to see if our definitions of sound and acoustics
are consistent with the dictionary versions. The American Heritage Dictionary tells
us that
(a): “Sound is a vibratory disturbance in the pressure and density of a fluid or in the
elastic strain in a solid, with frequencies in the approximate range between 20 and
20,000 cycles per second, and capable of being detected by the organs of hearing,” and
(b): “Loosely, such a disturbance at any frequency.”

In the same dictionary, Acoustics is defined as
1. “The scientific study of sound, specially of its generation, propagation, perception,
and interaction with materials and with other forms of radiation. Used with a singular
verb.”
2. “The total effect of sound, especially as produced in an enclosed space. Used with
a plural verb.”
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1.1.1 Frequency Intervals. Musical Scale

The lowest frequency on anormal piano keyboard is 27.5 Hz and the highest, 4186 Hz.
Doubling the frequency represents an interval of one octave. Starting with the lowest
C (32.7 Hz), the keyboard covers 7 octaves. The frequency of the A-note in the
fourth octave has been chosen to be 440 Hz (international standard). On the equally
tempered chromatic scale, an octave has 12 notes which are equally spaced on a
logarithmic frequency scale.

A frequency interval fo — f represents log,(f2/f1) octaves (logarithm, base 2)
and the number of decades is log,,( fa/f1). A frequency interval covering one nth of
an octave is such that log, (fa/f1) = 1/n, ie., fo/fi = 2Y/". The center frequency
of an interval on the logarithmic scale is the (geometrical) mean value, f,, = /11 fo.

Thus, the ratio of the frequencies of two adjacent notes on the equally tempered
chromatic scale (separation of 1/12th of an octave) is 21/12 ~ 1.059 which defines a
semitone interval, half a tone. The intervals in the major scale with the notes C, D,
E,F, G, A, and B, are 1 tone, 1 tone, 1/2 tone, 1 tone, 1 tone, 1 tone, and 1/2 tone.

Other measures of frequency intervals are cent and savart. One cent is 0.01 semi-
tones and one savart is 0.001 decades.

1.1.2 Problems

1. Frequencies of the normal piano keyboard
The frequency of the A note in the fourth octave on the piano is 440 Hz. List the
frequencies of all the other notes on the piano keyboard.

2. Pitch discrimination of the human ear
Pitch is the subjective quantity that is used in ordering sounds of different frequencies.
To make a variation A f in frequency perceived as a variation in pitch, A f/f must exceed
a minimum value, the difference limen for pitch, that depends on f. However, in the
approximate range from 400 to 4000 Hz this ratio is found to be constant, ~ 0.003
for sound pressures in the normal range of speech. In this range, what is the smallest
detectable frequency variation Af/f in (a) octaves, (b) cents, (c) savarts?

3. Tone intervals
The ‘perfect fifth,” “perfect fourth,” and ‘major third refer to tone intervals for which
the frequency ratios are 3/2, 4/3, and 5/4. Give examples of pairs of notes on the piano
keyboard for which the ratios are close to these values.

4. Engineering acoustics and frequency bands
(a) Octave band spectra in noise control engineering have the standardized center fre-
quencies 31.5, 63, 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. What is the bandwidth
in Hz of the octave band centered at 1000 Hz.
(b) One-third octave bands are also frequently used. What is the relative bandwidth
Af/fm of a 1/3 octave where Af = fo — f1 and fy, is the center frequency?

1.2 An Overview of Some Specialties in Acoustics

An undergraduate degree in acoustics is generally not awarded in colleges in the
U.S.A., although general acoustics courses are offered and may be part of a de-
partmental requirement for a degree. On the graduate level, advanced and more
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specialized courses are normally available, and students who wish to pursue a career
in acoustics usually do research in the field for an advanced degree in whatever de-
partment they belong to. Actually, the borderlines between the various disciplines
in science and engineering are no longer very well defined and students often take
courses in departments different from their own. Even a thesis advisor can be from a
different department although the supervisor usually is from the home department.
This flexibility is rather typical for acoustics since it tends to be interdisciplinary to
a greater extent than many other fields. Actually, to be proficient in many areas of
acoustics, it is almost necessary to have a working knowledge in other fields such as
dynamics of fluids and structures and in signal processing.

In this section we present some observations about acoustics to give an idea of
some of the areas and applications that a student or a professional in acoustics might
get involved with. There is no particular logical order or organization in our list of
examples, and the lengths of their description are not representative of their relative
significance.

A detailed classification of acoustic disciplines can be found in most journals of
acoustics. For example, the Journal of the Acoustical Society of America contains
about 20 main categories ranging from Speech production to Quantum acoustics,
each with several subsections. There are numerous other journals such as Sound and
Vibration and Applied Acoustics in the U K. and Acustica in Germany.

1.2.1 Mathematical Acoustics

We start with the topic which is necessary for a quantitative understanding of acous-
tics, the physics and mathematics of waves and oscillations. It is not surprising that
many acousticians have entered the field from a background of waves acquired in
electromagnetic theory or quantum mechanics. The transition to linear acoustics is
then not much of a problem; one has to get used to new concepts and solve a number
of problems to get a physical feel for the subject. To become well-rounded in aero-
acoustics and modern problems in acoustics, a good knowledge of aerodynamics and
structures has to be acquired.

Many workers in the field often spend several years and often a professional career
working on various mathematical wave problems, propagation, diffraction, radiation,
interaction of sound with structures, etc., sometimes utilizing numerical techniques.
These problems frequently arise in mathematical modeling of practical problems and
their solution can yield valuable information, insights, and guidelines for design.

1.2.2 Architectural Acoustics

Returning to the two definitions of acoustics above, one definition refers to the per-
ception of speech and music in rooms and concert halls. In that case, as mentioned,
the plural form of the associated verb is used.

Around the beginning of the 20th century, the interest in the acoustical character-
istics of rooms and concert halls played an important role in the development of the
field of acoustics as a discipline of applied physics and engineering. To a large extent,
this was due to the contributions by Dr. Wallace C. Sabine, then a physics professor
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at Harvard University, with X-rays as his specialty. His acoustic diversions were moti-
vated initially by his desire to try to improve the speech intelligibility in an incredibly
bad lecture hall at Harvard. He used organ pipes as sound sources, his own hearing
for sound detection, and a large number of seat cushions (borrowed from a nearby
theater) as sound absorbers. To eliminate his own absorption, he placed himself in
a wooden box with only his head exposed. With these simple means, he established
the relation between reverberation time and absorption in a room, a relation which
now bears his name. The interest was further stimulated by his involvement with
the acoustics of the Boston Symphony Hall. These efforts grew into extensive sys-
tematic studies of the acoustics of rooms, which formed the foundation for further
developments by other investigators for many years to come.

Itisafar cry from Sabine’s simple experiments to modern research in room acoustics
with sophisticated computers and software, but the necessary conditions for ‘good’
acoustics established by Sabine are still used. They are not sufficient, however. The
difficulty in predicting the response of a room to music and establishing subjective
measures of evaluation are considerable, and it appears that even today, concert hall
designers are relying heavily on empiricism and their knowledge of existing ‘good” halls
as guides. With the aid of modern signal analysis and data processing, considerable
research is still being done to develop a deeper understanding of this complex subject.

Architectural acoustics deals not only with room acoustics, i.e., the acoustic re-
sponse of an enclosed space, but also with factors that influence the background
noise level in a room such as sound transmission through walls and conduits from
external sources and air handling systems.

1.2.3 Sound Propagation in the Atmosphere

Many other areas of acoustics have emerged from specific practical problems.
A typical example is atmospheric acoustics. For the past 100 years the activity in
this field has been inspired by a variety of societal needs. Actually, interest in the field
goes back more than 100 years. The penetrating crack of a bolt of lightning and the
rolling of thunder always have aroused both fear and curiosity. It is not until rather
recently that a quantitative understanding of these effects is emerging.

The early systematic studies of atmospheric acoustics, about a century ago, were
not motivated by thunder, however, but rather by the need to improve fog horn
signaling to reduce the hazards and the number of ship wrecks that were caused by
fog in coastal areas. Many prominent scientists were involved such as Tyndall and
Lord Rayleigh in England and Henry in the United States. Through their efforts,
many important results were obtained and interesting questions were raised which
stimulated further studies in this field.

Later, a surge of interest in sound propagation in the atmosphere was generated by
the use of sound ranging for locating sound sources such as enemy weapons. In this
country and abroad, several projects on sound propagation in the atmosphere were
undertaken and many theoretical physicists were used in these studies. In Russia,
one of their most prominent quantum theorists, Blokhintzev, produced a unique
document on sound propagation in moving, inhomogeneous media, which later was
translated by NACA (now NASA).
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The basic problem of atmospheric acoustics concerns sound propagation over a
sound absorptive ground in an inhomogeneous turbulent atmosphere with tempera-
ture and wind gradients. The presence of wind makes the atmosphere acoustically
anisotropic and the combination of these gradients and the effect of the ground gives
rise to the formation of shadow zones. The theoretical analysis of sound propagation
under these conditions is complicated and it is usually supplemented by experimental
studies.

The advent of the commercial jet aircraft created community noise problems and
again sound propagation in the atmosphere became an important topic. Numerous
extensive studies, both theoretical and experimental, were undertaken.

The aircraft community noise problem in the US led to federal legislation (in 1969)
for the noise certification of aircraft, and this created a need for measurement of
the acoustic power output of aircraft engines. It was soon realized that atmospheric
and ground conditions significantly affected the results and again detailed studies of
sound propagation were undertaken.

The use of sound as a diagnostic tool (SODAR, SOund Detection And Ranging)
for exploration of the conditions of the lower atmosphere also should be mentioned
as having motivated propagation studies. An interesting application concerns the
possibility of using sound scattering for monitoring the vortices created by a large
aircraft at airports. These vortices can remain in the atmosphere after the landing of
the aircraft, and they have been found to be hazardous for small airplanes coming in
for landing in the wake of a large plane.

1.2.4 Underwater Sound, Geo-acoustics, and Seismology

The discussion of atmospheric acoustics above illustrates how a particular research
activity often is stimulated and supported from time to time by many different societal
needs and interests.

Atmospheric acoustics has its counterparts in the sea and in the ground, sometimes
referred to as ocean and geo-acoustics, respectively. From studies of the sound
transmission characteristics, it is possible to get information about the sound speed
profiles which in turn contain information about the structure and composition of
the medium. Geo-acoustics and seismology deal with this problem for exploring the
structure of the Earth, where, for example, oil deposits are the target of obvious
commercial interests.

Sound scattering from objects in the ocean, be it fish, submarines, or sunken ships,
can be used for the detection and imaging of these objects in much the same way as
in medical acoustics in which the human body is the ‘medium’ and organs, tumors,
and fetuses might be the targets.

During World War II, an important battleground was underwater and problems
of sound ranging in the ocean became vitally important. This technology developed
rapidly and many acoustical laboratories were established to study this problem. It
was in this context the acronym SONAR was coined.

More recently, the late Professor Edgerton at M.LT., the inventor of the modern
stroboscope, developed underwater scanners for the exploration of the ocean floor
and for the detection of sunken ships and other objects. He used them extensively in
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collaboration with his good friend, the late Jacques Cousteau, on many oceanographic
explorations.

1.2.5 Infrasound. Explosions and Shock Waves

Geo-acoustics, mentioned in the previous section, deals also with earthquakes in
which most of the energy is carried by low frequencies below the audible range
(ie., in the infrasound regime). These are rather infrequent events, however, and
the interest in infrasound, as far as the interaction with humans and structures is
concerned, is usually focused on various industrial sources such as high power jet
engines and gas turbine power plants for which the spectrum of significant energy
typically goes down to about 4 Hz. The resonance frequency of walls in buildings
often lie in the infrasonic range and infrasound is known to have caused unacceptable
building vibration and even structural damage.

Shock waves, generated by explosions or supersonic air craft (sonic boom), for
example, also contain energy in the infrasonic range and can have damaging effects on
structures. For example, the spectrum often contain substantial energy in a frequency
range close to the resonance frequency of windows which often break as a result of the
‘push-pull’ effect caused by such waves. The break can occur on the pull half-cycle,
leaving the fragments of the window on the outside.

1.2.6 Noise Control

In atmospheric acoustics research, noise reduction was one of the motivating societal
needs but not necessarily the dominant one. In many other areas of acoustics, how-
ever, the growing concern about noise has been instrumental in promoting research
and establishing new laboratories. Historically, this concern for noise and its effect
on people has not always been apparent. During the Industrial Revolution, 100 to
150 years ago, we do not find much to say about efforts to control noise. Rather, part
of the reason was probably that noise, at least industrial noise, was regarded as a sign
of progress and even as an indicator of culture.

Only when it came to problems that involved acoustic privacy in dwellings was the
attitude somewhat different. Actually, building constructions incorporating design
principles for high sound insulation in multi-family houses can be traced back as far
as to the 17th century, and they have been described in the literature for more than
100 years.

As a historical aside, we note that in 1784 none less than Michael Faraday was
hired by the Commissioner of Jails in England to carry out experiments on sound
transmission of walls in an effort to arrive at a wall construction that would prevent
communication between prisoners in adjacent cells. This was in accord with the then
prevailing attitude in penology that such an isolation would be beneficial in as much
as it would protect the meek from the savage and provide quiet for contemplation.

More recently, the need for sound insulation in apartment buildings became par-
ticularly acute when, some 50 to 60 years ago, the building industry more and more
turned to lightweight constructions. It quickly became apparent that the building in-
dustry had to start to consider seriously the acoustical characteristics of materials and
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building constructions. As a result, several acoustical laboratories were established
with facilities for measurement of the transmission loss of walls and floors as well as
the sound absorptive characteristics of acoustical materials.

At the same time, major advances were made in acoustical instrumentation which
made possible detailed experimental studies of basic mechanisms and understanding
of sound transmission and absorption. Eventually, the results thus obtained were
made the basis for standardized testing procedures and codes within the building
industry.

Noise control in other areas developed quickly after 1940. Studies of noise from
ships and submarines became of high priority during the second World War and spe-
cialized laboratories were established. Many mathematicians and physical scientists
were brought into the field of acoustics.

Of more general interest, noise in transportation, both ground based and air borne,
has rapidly become an important problem which has led to considerable investment
on the part of manufacturers on noise reduction technology. Related to it is the
shielding of traffic noise by means of barriers along highways which has become an
industry all of its own. Aircraft noise has received perhaps even more attention and
is an important part of the ongoing work on the control of traffic noise and its societal
impact.

1.2.7 Aero-acoustics

The advent of commercial jet air craft in the 1950s started a new era in acoustics, or
more specifically in aero-acoustics, with the noise generation by turbulent jets at the
core. Extensive theoretical and experimental studies were undertaken to find means
of reducing the noise, challenging acousticians, aerodynamicists, and mathematicians
in universities, industrial, and governmental laboratories.

Soon afterwards, by-pass engines were introduced, and it became apparent that
the noise from the ducted fan in these engines represented a noise problem which
could be even more important than the jet noise. In many respects, it is also more
difficult than the jet noise to fully understand since it involves not only the generation
of sound from the fan and guide vane assemblies but also the propagation of sound
in and radiation from the fan duct. Extensive research in this field is ongoing.

1.2.8 Ultrasonics

There are numerous other areas in acoustics ranging from basic physics to various
industrial applications. One such area is ultrasonics which deals with high frequency
sound waves beyond the audible range, as mentioned earlier. It contains many sub-
divisions. Medical acoustics is one example, in which ultrasonic waves are used as a
means for diagnostic imaging as a supplement to X-rays. Surgery by means of focused
sound waves is also possible and ultrasonic microscopy is now a reality. Ultrasonic
“drills,” which in essence are high frequency chip hammers, can produce arbitrarily
shaped holes, and ultrasonic cleaning has been known and used for a long time.
Ultrasound is used also for the detection of flaws in solids (non-destructive testing)
and ultrasonic transducers can be used for the detection of acoustic emission from
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stress-induced dislocations. This can be used for monitoring structures for failure
risk.

High-intensity sound can be used for emulsification of liquids and agglomeration of
particles and is known to affect many processes, particularly in the chemical industry.
Ultrasonic waves in piezo-electric semi-conductors, both in bulk and on the surface,
can be amplified by means of a superimposed electric field. Many of these and related
industrial applications are sometimes classified under the heading Sonics.

1.2.9 Non-linear Acoustics

In linear acoustics, characterized by sound pressures much smaller than the static
pressure, the time average value of the sound pressure or any other acoustic variable
in a periodic signal is zero for most practical purposes. However, at sufficiently large
sound pressures and corresponding fluid velocity amplitudes, the time average or
mean values can be large enough to be significant. Thus, the static pressure variation
in a standing sound wave in an enclosure can readily be demonstrated by trapping light
objects and moving them by altering the standing wave field without any other material
contact with the body than the air in the room. This is of particular importance in the
gravity free environment in a laboratory of an orbiting satellite.

Combination of viscosity and large amplitudes can also produce significant acous-
tically induced mean flow (acoustic streaming) in a fluid and a corresponding particle
transport. Similarly, the combination of heat conduction and large amplitudes can
lead to a mean flow of heat and this effect has been used to achieve acoustically driven
refrigeration using acoustic resonators driven at resonance to meet high amplitude
requirements.

Other interesting effects in nonlinear acoustics include interaction of a sound wave
with itself which makes an initially plane harmonic wave steepen as it travels and
ultimately develop into a saw tooth wave. This is analogous to the steepening of
surface waves on water. Interaction of two sound waves of different frequencies
leads to the generation of sum and difference frequencies so that a low-frequency
wave can be generated from two high-frequency waves.

1.2.10 Acoustic Instrumentation

Much of what we have been able to learn in acoustics (as in most other fields) has been
due to the availability of electronic equipment both for the generation, detection,
and analysis of sound. The rapid progress in the field beginning about 1930 was
due to the advent of the radio tube and the equipment built around it. This first
electronic ‘revolution,” the electronic “analog’ era, was followed with a second with
the advent of the transistor which led into the present ‘digital’ era. The related
development of equipment for acoustic purposes, from Edison’s original devices to
the present, is a fascinating story in which many areas of acoustics have been involved,
including the electro-mechanics of transducers, sound radiation, room acoustics, and
the perception of sound.



10 ACOUSTICS

1.2.11 Speech and Hearing

The physics, physiology, and psychology of hearing and speech occupies a substantial
part of modern acoustics. The physics of speech involves modeling the vocal tract
as a duct of variable area (both in time and space) driven at the vocal chords by a
modulated air stream. A wave theoretical analysis of the response of the vocal tract
leads to an understanding of the frequency spectrum of the vowels. In the analysis of
the fricative sounds, such as s, sh, ch, and t, the generation of sound by turbulent flow
has to be accounted for. On the basis of the understanding thus obtained, synthetic
speech generators have been developed.

Hearing represents a more complicated problem, even on the physics level, which
deals with the acoustics of the ear canal, the middle ear, and, in particular, the fluid
dynamics in the inner ear. In addition, there are the neurological aspects of the
problem which are even more complex. From extensive measurements, however,
much of the physics of hearing has been identified and understood, at least in part,
such as the frequency dependence of the sensitivity of the human ear, for example.

1.2.12 Musical Acoustics

The field of musical acoustics is intimately related to that of speech. The physics now
involves an understanding of sound generation by various musical instruments rather
than by the vocal tract. A thorough understanding of wind instruments requires an
intimate knowledge of aero-acoustics. For string instruments, like the violin and the
piano, the vibration and radiation characteristics of the sounding boards are essential,
and numerous intricate experiments have been carried out in efforts to make the
vibrations visible.

1.2.13 Phonons and Laser Light Spectroscopy

The thermal vibrations in matter can be decomposed into (random) acoustic waves
over a range of wavelengths down to the distance between molecules. The exper-
imental study of such high-frequency waves (‘hypersonics’) requires a ‘probe’ with
the same kind of resolution and the use of (Brillouin) scattering of laser light is the
approach that has been used (photon-phonon interaction). By analysis of the light
scattered by the waves in a transparent solid (heterodyne spectroscopy), it is possible
to determine the speed of sound and the attenuation in this high-frequency regime.
The scattered light is shifted in frequency by an amount equal to the frequency of
the acoustic wave and this shift is measured. Furthermore, the line shape of the
scattered light provides another piece of information so that both the sound speed
and attenuation can be determined.

A similar technique can be used also for the thermal fluctuations of a liquid surface
which can be decomposed into random high-frequency surface waves. The upper
frequency limit varies from one liquid to the next but the corresponding wavelength
is of the order of the intermolecular distance. Again by using the technique of laser
light heterodyne spectroscopy, both surface tension and viscosity can be determined.
Actually, even for the interface between two liquids which do not mix, these quantities
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can be determined. The interfacial surface tension between water and oil, for exam-
ple, is of considerable practical interest.

1.2.14 Flow-induced Instabilities

The interaction of a structure with fluid flow can lead to vibrations which under certain
conditions can be unstable through feedback. The feedback can be a result of the
interactions between fluid flow, sound, and the structure.

In some musical wind instruments, such as an organ pipe or a flute, the structure
can be regarded as rigid as far as the mechanism of the instability is concerned, and it
is produced as a result of the interaction of vorticity and sound. The sound produced
by a vortex can react on the fluid flow to promote the growth of the vortex and hence
give rise to a growing oscillation and sound that is sustained by the flow through this
feedback.

A similar instability, which is very important in some industrial facilities, is the
‘stimulated” Kdrmén vortex behind a cylinder in a duct. The periodic vortex can be
stimulated through feedback by an acoustic cross mode in the duct if its resonance
frequency is equal to (or close to) the vortex frequency. This is a phenomenon which
can occur in heat exchangers and the amplitude can be so large that it represents an
environmental problem and structural failure can also result.

A stimulation of the Karman vortex can result also if the cylinder is flexible and if the
transverse resonance frequency of the cylinder is the same as the vortex frequency.
Large vibrations of a chimney can occur in this manner and the structural failure of
the Tacoma bridge is a classic example of the destructive effects that can result from
this phenomenon.

In a reed type musical instrument, or in an industrial control valve, the reed or
the valve plug represents a flexible portion of the structure. In either of these cases,
this flexible portion is coupled to the acoustic resonator which, in the case of the
plug, is represented by the pipe or duct involved. If the resonance frequencies of the
structure and the pipe are sufficiently close, the feedback can lead to instability and
very large vibration amplitudes, known to have caused structural failures of valves.

1.2.15 Aero-thermo Acoustics. Combustion Instability

This designation as a branch of acoustics is sometimes used when heat sources and
heat conduction have a significant influence on the acoustics. For example, the sound
generation in a combustor falls into this category as does the acoustic refrigeration
mentioned earlier.

The rate of heat release Q in a combustor acts like a source of sound if Q is time
dependent with the acoustic source strength being proportional to dQ/dt. If Q is
also pressure dependent, the sound pressure produced in the combustion chamber
can feed back to the combustor and modulate the acoustic output. This can lead
to an instability with high amplitude sound (and vibration) as a consequence. The
vibrations can be so violent that structural failure can result when a facility, such as a
gas turbine power plant, is operating above a certain power setting. The challenge,
of course, is to limit the amplitude of vibrations or, even better, to eliminate the
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instability. An acoustic analysis can shed valuable light on this problem and can be
most helpful in identifying its solution.

1.2.16 Miscellaneous

As in most other fields of science and engineering, there are numerous activities
dealing with regulations, codes, standards, and the like. They are of considerable
importance in industry and in government agencies and there is great need for inputs
from experts. Working in such a field, even for a short period, is apt to provide famil-
iarity with various government agencies and international organizations and serve as
an introduction to the art of politics.



Chapter 2

Oscillations

As indicated in the Preface, it is assumed that the reader is familiar with the content
of atypical introductory course in mechanics that includes a discussion of the basics of
the harmonic oscillator. It is an essential element in acoustics and it will be reviewed
and extended in this chapter. The extension involves mainly technical aspects which
are convenient for problem solving. Thus, the use of complex variables, in particular
the complex amplitude, is introduced as a convenemt and powerful way of dealing
with oscillations and waves.

With modern digital instrumentation, many aspects of signal processing are read-
ily made available and to be able to fully appreciate them, it is essential to have
some knowledge of the associated mathematics. Thus, Fourier series and Fourier
transforms, correlation functions, spectra and spectrum analysis are discussed. As an
example, the response of an oscillator to a completely random driving force is deter-
mined. This material is discussed in Section 2.6. However, it can be skipped at a first
reading without a lack of continuity.

The material referred to above is all ‘standard’; it is important to realize, though,
that it is generally assumed that the oscillators involved and the related equations of
motion are linear. This is an idealization, and is valid, at best, for small amplitudes of
oscillations. But even for small amplitudes, an oscillator can be non-linear, and we
end this chapter with a simple example. It involves a damped mass-spring oscillator.
Normally, the friction force is tactily assumed to be proportional to the velocity in
which case the equation of motion becomes linear and a solution for the displacement
is readily found. However, consider the very simple case of a mass sliding on a table
and subject not only to a (‘dynamic’) friction force proportional to the velocity but
also to a (‘static’) friction force proportional to the static friction coefficient.

2.1 Harmonic Motions

A periodic motion is one that repeats itself after a constant time interval, the period,
denoted T. The number of periods (cycles) per second, cps, is called the frequency
f (i.e. f =1/T cpsor Hz)."! For example, a period of 0.5 seconds corresponds to a
frequency of 2 Hz.

IThe unit Hz after the German physicist Heinrich Hertz (1857—1894).

13
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The periodic motion plays an important role in nature and everyday life; the spin
of the earth and the orbital motion (assumed uniform) of the earth and of the moon
are obvious examples. The ordinary pendulum is familiar to all but note that the
period of oscillation increases with the amplitude of oscillation. This effect, however,
is insignificant at small amplitudes.

To obtain periodicity to a very high degree of accuracy, one has to go down to the
atomic level and consider the frequency of atomic “vibrations.” Actually, this is the
basis for the definition of the unit of time. A good atomic clock, a Cesium clock, loses
or gains no more than one second in 300,000 years and the unit of time, one second,
is defined as the interval for 9,191,631,770 periods of the Cesium atom.2

Harmonic motion is a particular periodic motion and can be described as follows.
Consider a particle P which moves in a circular path of radius A with constant speed.
The radius vector to the particle makes an angle with the x-axis which is proportional
to time 7, expressed as wt, where w is the angular velocity (for rectilinear motion, the
position of the particle is x = vz, where v is the linear velocity). It is implied that the
particle crosses the x-axis at + = 0. After one period T of this motion, the angle wt
has increased by 2, i.e., oT = 27 or

w=21)T =2nf (2.1)

where f = 1/T, is the frequency, introduced above. In general discussions, the
term frequency, rather than angular frequency, is often used also for w. Of course, in
numerical work one has to watch out for what quantity is involved, w or f.

The time dependence of the x-coordinate of the particle P defines the harmonic

motion
& = Acos(wt). (2.2)

It is characteristic of harmonic motion that @ does not depend on time. But note
that a motion can be periodic even if  is time dependent. This is the case for the
motion of a planet in an elliptical orbit, for example.

The velocity in the harmonic motion is

u=£&=—Awsin(wt) (2.3)
and the acceleration )
a=§&=—Aw’cos(wt) = —’E. (2.4)

It follows that the harmonic motion satisfies the differential equation

£ = —w’. (2.5)

Thus, if an equation of this form is encountered in the study of motion, we know
that the harmonic motion is a solution. As we shall see, such is the case when a
particle, displaced from its equilibrium position, is acted on by a restoring force

2The unit of length, one meter, is defined in such a way as to make the speed of light exactly 3x 108 m/sec;
thus, the unit of length, one meter, is the distance traveled by light in (1/3)10™8 sec. This unit is very close
to the unit of length based on the standard meter (a bar of platinum-iridium alloy) kept at the International
Bureau of Weight and Measures at Sevres, France.
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that is proportional to the displacement. Then, when the particle is released, the
subsequent motion will be harmonic. A mass at the end of a coil spring (the other
end of the spring held fixed) is an example of such an oscillator. (It should be noted
though that in practice the condition that the restoring force be proportional to the
displacement is generally valid only for sufficiently small displacements.)
If the origin of the time scale is changed so that the displacement is zero at time
t =11, we get
E@) = Acos[w(t —11)] = Acos(wt — @) (2.6)
where ¢ = w7 is the phase angle or phase lag. Quantity A is the ampliutde and the
entire argument t — ¢ is sometimes called the ‘phase.” In terms of the corresponding
motion along a circle, the representative point trails the point P, used earlier, by the

angle ¢.

Example

The velocity that corresponds to the displacement in Eq. 2.6. is u = —Aw sin(wt).
The speed is the absolute value |u| of the velocity. Thus, to get the average speed we
need consider only the average over the time during which u is positive, (i.e., in the
time interval from 0 to T/2), and we obtain

T/2

(lul) =2/T / Awsin(wt)dt = (/7)) umax, (2.7)
0

where uqx = Aw is the maximum speed.
The mean square value of the velocity is the time average of the squared velocity
and the root mean square value, rms, is the the square root of the mean square value,

W = Q/7) [ uddt = u,, /2,
Urms = Mma)c/\/§ (28)

where Uy = Aw.

We shall take Eq. 2.6 to be the definition of harmonic motion. The velocity u is also
a harmonic function but we have to express it in terms of a cosine function to see what
the phase angle is. Thus, u = w|&| sin(wt) = w|&| cos(wt —m /2) is a harmonic motion
with the amplitude w|£| and the phase angle (lag) 7/2. Similarly, the acceleration is
a harmonic function a = —?|&| cos(wt) = w?|€| cos(wt — ) with the amplitude
w?|&| and the phase angle 7.

One reason for the importance of the harmonic motion is that any periodic function,
period T and fundamental frequency 1/ T, can be decomposed in a (Fourier) series of
harmonic functions with frequencies being multiples of the fundamental frequency,
as will be discussed shortly.

2.11 The Complex Amplitude

For a given angular velocity w, a harmonic function £ (f) = || cos(wt — ¢) is uniquely
defined by the amplitude |§| and the phase angle ¢. Geometrically, it can be repre-
sented by a point in a plane at a distance |£| from the origin with the radius vector
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making an angle ¢ = 0 with the x-axis. This representation reminds us of a complex
number z = x+iy in the complex plane (see Appendix B), where x is the real part and
y the imaginary part. As we shall see, complex numbers and their algebra are indeed
ideally suited for representing and analyzing harmonic motions. This is due to the
remarkable Euler’s identity exp(ia) = cosa + i sina, where i is the imaginary unit

number i = +/—1 (i.e., i2 = —1). To prove this relation, expand exp(i«) in a power
series in o, making use of i 2 = —1, and collect the real and imaginary parts; they are
indeed found to be the power series expansions of cos & and sin «, respectively. With
the proviso i2 = =1 (% = —i, etc.), the exponential exp(ia) is then treated in the

same way as the exponential for a real variable with all the associated algebraic rules.

It is sometimes useful to express cosa and sina in terms of exp(ia); cosa =
(1/2)[exp(iar) + exp(—ia)] and sina = (1/2i)[exp(ie) — exp(—ia)].

The complex number exp(ia) is represented in the complex plane by a point with
the real part cos a and the imaginary part sin . The radius vector to the point makes
an angle o with the real axis. With 9 standing for ‘the real part of” and witha = wt —¢,
the harmonic displacement &(r) = || cos(wt — ¢) can be expressed as

Definition of the complex amplitude _
£(1) = |€| cos(wr — @) = R{|5|e™ @D} = B{|5|e"? 7'} = R{E(w)e ™)
(o) = |E]e?

(2.9)

At a given frequency, the complex amplitude &(w) = || exp(i¢) uniquely defines
the motion.? It is represented by a point in the complex plane (Fig. 2.1) a distance
|&] from the origin and with the line from the origin to the point making an angle ¢
with the real axis.

The unitimaginary number can be written i = exp(ix/2) (=cos(r/2) + i sin(1/2))
with the magnitude 1 and phase angle 7/2; it is located at unit distance from the
origin on the imaginary axis. Multiplying the complex amplitude E(w) = €] exp(i¢)
by i = exp(im/2) increases the phase lag by /2 and multiplication by —i reduces it
by the same amount.

Differentiation with respect to time in Eq. 2.9 brings down a factor (—iw) =
w exp(—im/2) so that the complex amplitudes of the velocity £(t) and the acceleration
£(1) of the particle are (—iw)&(w) and (—iw)26(w) = —w?E(w). The locations of
these complex amplitudes are indicated in Fig. 2.1 (with the tilde signatures omitted,
in accordance with the comment on notation given below); their phase lags are smaller
than that of the displacement by /2 and 7, respectively; this means that they are
running ahead of the displacement by these angles.

To visualize the time dependence of the corresponding real quantities, we can let
the complex amplitudes rotate with an angular velocity w in the counter-clockwise
direction about the origin; the projections on the real axis then yield their time
dependence.

SWe could equally well have used &(r) = R{|&| expli(wt — @)1} = R{[|§| exp(—i¢)]exp(iwt)} in the
definition of the complex amplitude. It merely involves replacing i by —i. This definition is sometimes used
in engineering where —i is denoted by j. Our choice will be used consistently in this book. One important
advantage becomes apparent in the description of a traveling wave in terms of a complex variable.
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Figure 2.1: The complex plane showing the location of the complex amplitudes of displace-
ment &(w), velocity £(w) = —iwE(w) = &(w) exp(—im/2), and acceleration £E(0) = —o%E(w).

All the terms in a differential equation for & (¢) can be expressed in a similar manner
in terms of the complex amplitude & (w). Thus, the differential equation is converted
into an algebraic equation for £(w). Having obtained & (w) by solving the equation,
we immediately get the amplitude |£| and the phase angle ¢ which then define the
harmonic motion &(¢) = |&| cos(wt — ¢).

A Question of Notation

Sometimes the complex amplitude is given a ‘tilde’ symbol to indicate that the function
£(w) is the complex amplitude of the displacement. In other words, the complex
amplitude is not obtained merely by replacing ¢ by @ in the function £&. However, for
convenience in writing and without much risk for confusion, we adopt from now on
the convention of dropping the tilde symbol, thus denoting the complex amplitude
merely by &(w). Actually, as we get seriously involved in problem solving using
complex amplitudes, even the argument will be dropped and & alone will stand for
the complex amplitude; the context then will decide whether &(¢) or & (w) is meant.

Example

What is the complex amplitude of a displacement & () = |§| sin[w(t — T/6)], where
T is the period of the motion.

The phase angle ¢ of the complex amplitude &(w) is based on the displacement
being written as a cosine function, i.e., §(f) = |£]| cos(wt — ¢). Thus, we have to
express the sine function in terms of a cosine function, i.e., sina = cos(e — 7/2).
Then, with wT = 27, we get sin[w(t — T/6)] = cos(wt — /3 — 7/2) = cos(wt —
57 /6). Thus, the complex amplitude is & (w) = |£] exp(i57/6).

2.1.2 Problems

1. Harmonic motion, definitions

What is the angular frequency, frequency, period, phase angle (in radians), and ampli-
tude of a displacement £ = 2 cos[100(¢ — 0.1)] cm, where ¢ is the time in seconds?
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2. Harmonic motion. Phase angle
The harmonic motion of two particles are A cos(wt) and A cos(wt — 77/6).
(a) The latter motion lags behind the former in time. Determine this time lag in terms
of the period T
(b) At what times do the particles have their (positive) maxima of velocity and accelera-
tion?
(c) If the amplitude A is 1 cm, at what frequency (in Hz) will the acceleration equal
g = 981 em/sec??

3. Complex amplitudes and more
Consider again Problem 1.
(a) What are the complex amplitudes of displacement, velocity, and acceleration?
(b) Indicate their location in the complex plane.
(c) What is the average speed in one period?
(d) What is the rms value of the velocity?

4. Sand on a membrane
A membrane is excited by an incoming sound wave at a frequency of 50 Hz. At a certain
level of the sound, grains of sound on the membrane begin to bounce. What then, is
the displacement amplitude of the membrane? (This method was used by Tyndall in
1874 in his experiments on sound propagation over ocean to determine the variation of
the range of fog horn signals with weather and wind.)

2.1.3 Sums of Harmonic Functions. Beats
Same Frequencies

The sum (superposition) of two harmonic motions &1 (f) = A1 cos(wf —¢1) and &2(1) =
Az cos(wat — ¢2) with the same frequencies but with different amplitudes and phase
angles is a harmonic function A cos(wt — ¢). To prove that, use the trigonometric
identity cos(a —b) = cos(a) cos(b) +sin(a) sin(b) and collect the resulting terms with
cos(wt) and sin(wr) and then compare the expression thus obtained for both the sum
and for A cos(wt — ¢). Itisleft as a problem to carry out this calculation (Problem 1).

If we use the complex number representation, we can express the two harmonic
functions as By exp(—iwt) and By exp(—iwt) where By and By are complex, in this
case By = Ay exp(i¢1) and Bo = Ag exp(i2). The sum is then (B + Bz) exp(—iwt),
with the new complex amplitude B = By + By. The real and imaginary parts of B;
are A cos(¢1) and Aj sin(¢) with similar expressions for By and B. By equating the
real and imaginary parts in B = B] + Bo, we readily find A and ¢.

The result applies to the sum of an arbitrary number of harmonic functions of the
same frequency.

Different Frequencies

Consider the sum of two harmonic motions, C; cos(wt) and Ca cos(2wt). The period
of the first is 7' and of the second, T'/2. The sum will be periodic with the period T
since both functions repeat after this time. Furthermore, the sum will be symmetric
(even) with respect to ¢; it is the same for positive and negative values of ¢ since this
is true for each of the components. The same holds true for the sum of any number
of harmonic functions of the form A,, cos(nwt).
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Figure 2.2: The functions cos(w11), cos(v/3w1t) and their sum (frequencies are incommen-
surable).

If the terms cos(nwt) are replaced by sin(nwt), the sum will still be periodic with
the period T, but it will be anti-symmetric (odd) in the sense that it changes sign
when ¢ does.

If the terms are of the form

a, cos(nwt — ¢,) = ay[cos ¢, cos(nwt) + sin ¢, sin(nwt)],

where n is an integer, the sum contains a mixture of cosine and sine terms. The sum
will still be periodic with the period 7', but the symmetry properties mentioned above
are no longer valid.

We leave it for the reader to experiment with and plot sums of this kind when the
frequencies of the individual terms are integer multiples of a fundamental frequency
or fractions thereof; we shall comment here on what happens when the fraction is an
irrational number.

Thus, consider the sum S(¢) = 0.5 cos(w17) — 0.5 cos(v/3 w1 7). The functions and
their sum are plotted in Fig. 2.2. The ratio of the two frequencies is V/3, an irrational
number (the two frequencies are incommensurable), and no matter how long we wait,
the sum will not be periodic. In the present case, the sum starts out with the value 0
at t = 0 and then fluctuates in an irregular manner between —1 and +1.

On the other hand, if the ratio had been commensurable (i.e., a rational fraction)
the sum would have been periodic; for example, a ratio 2/3 results in a period 377.

The addition of two harmonic functions with slightly different frequencies leads
to the phenomenon of beats; it refers to a slow variation of the total amplitude of
oscillation. It is strictly a kinematic effect. It will be illustrated here by the sum of
two harmonic motions with the same amplitude but with different frequencies. The
mean value of the two frequencies is w, and they are expressed as w1 = @ — Aw and
ws = w+ Aw. Using the trigonometric identity cos(wt F Awt) = cos(wt) cos(Awt) =
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Figure 2.3: An example of beats produced by the sum of two harmonic motions with frequen-
cies 0.9w and 1.1w.

sin(wt) sin(Awt), we find for the sum of the corresponding harmonic motions
&(t) = cos(wt — Awt) + cos(wt + Awt) = 2 cos(Awt) cos(wt) (2.10)

which can be interpreted as a harmonic motion of frequency w with a periodically
varying amplitude (“beats”) of frequency Aw. The maximum value of the amplitude
is twice the amplitude of each of the components. An example is illustrated in Fig. 2.3.
In this case, with Aw = 0.1w, the period of the amplitude variation will be ~10T,
consistent with the result in the figure. Beats can be useful in experimental work
when it comes to an accurate comparison of the frequencies of two signals.

2.1.4 Heterodyning

The squared sum of two harmonic signals Aj cos(wif) and As cos(wsat) produces
signals with the sum and difference frequencies w1 + w2 and w; — ws, which can be
of considerable practical importance in signal analysis. The squared sum is

[Ajcos(wit)+As cos(a)gt)] A7 cosz(a)lt)—l-AQ cos (wzt)—i—QAlAzcos(a)l) cos(wat)

(2.11)

The time dependent part of each of the squared terms on the right-hand side is

harmonic with twice the frequency since cos?(wt) = [1 + cos(2wt)]/2. This is not

of any particular interest, however. The important part is the last term which can be
written

2A1As cos(wit) cos(wat) = AjAs[cos(wy + wo)t + cos(w) — wo)t]. (2.12)

It contains two harmonic components, one with the sum of the two primary fre-
quencies and one with the difference. This is what is meant by heterodyning, the
creation of sum and difference frequencies of the input signals. Normally, it is the
term with the difference frequency which is of interest.

There are several useful applications of heterodyning; we shall give but one example
here. A photo-cell or photo-multiplier is a device such that the output signal is
proportional to the square of the electric field in an incoming light wave. Thus, if the
light incident on the photo-cell is the sum of two laser signals, the output will contain
an electric current with the difference of the frequencies of the two signals.

Thus, consider a light beam which is split into two with one of the beams reflected
or scattered from a vibrating object, such as the thermal vibrations of the surface
of aliquid, where the reflected signal is shifted in frequency by an amount equal to
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the vibration frequency wp. (Actually, the reflected light contains both an up-shifted
and a down-shifted frequency, € % wp, which can be thought of as being Doppler
shifted by the vibrating surface.) Then, if both the direct and the reflected beams are
incident on the photo-cell, the output signals will contain the frequency of vibration.
This frequency might be of the order of 10° Hz whereas the incident light frequency
typically would be @ =~ 10'> Hz. In this case, the shift is very small, however, only
1 partin 1019, and conventional spectroscopic methods would not be able to resolve
such a small shift.

With the heterodyne technique, heterodyne spectroscopy, this problem of resolu-
tion is solved. Since the output current contains the difference frequency wy, the
vibration frequency, which can be detected and analyzed with a conventional elec-
tronic analyzer.

2.1.5 Problems

1. Sum of harmonic functions

(a) With reference to the outline at the beginning of Section 2.1.3, show that A} cos(w? —
¢1) + Aj cos(wt — ¢9) can be written as a new harmonic function A cos(wt — ¢) and
determine A and ¢ in terms of A}, Ag, ¢1, and ¢s.

(b) Carry out the corresponding calculation using complex amplitude description of the
harmonic functions as outlined in Section 2.1.3.

2. Heterodyning

In heterodyning, the sum of two signals with the frequencies w1 and wg are processed
with a square law detector producing the output sum and differences of the input signal
frequencies. What frequencies would be present in the output of a cube-law detector?

2.2 The Linear Oscillator

2.2.1 Equation of Motion

So far, we have dealt only with the kinematics of harmonic motion without regard to
the forces involved. The real ‘physics’ enters when we deal with the dynamics of the
motion and it is now time to turn to it.

One reason for the unique importance of the harmonic motion is that in many
cases in nature and in applications, a small displacement of a particle from its equi-
librium position generally results in a restoring (reaction) force proportional to the
displacement. If the particle is released from the displaced position, the only force
acting on it in the absence of friction will be the restoring force and, as we shall see,
the subsequent motion of the particle will be harmonic. The classical example is the
mass-spring oscillator illustrated in Fig. 2.4. A particle of mass M on a table, assumed
friction-less, is attached to one end of a spring which has its opposite end clamped.
The displacement of the particle is denoted &. Instead of sliding on the table, the
particle can move up and down as it hangs from the free end of a vertical spring with
the upper end of the spring held fixed, as shown.

Itis found experimentally that for sufficiently small displacements, the force required
to change the length of the spring by an amount £ is K&, where K is a constant. It
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Figure 2.4: Mass-spring oscillator.

is normally called the spring constant and, with the force being a linear function of
&, the oscillator is referred to as a linear oscillator. The reaction force on M is in the
opposite direction to the displacement and is —K&. After releasing the particle, the
equation of motion, Newton’s law, will be M &€ = —K&, where we have used the ‘dot-
notation for the time derivative. Furthermore, with K /M denoted a)% , this equation
can be written

£+ a)gé =0
i =K/M. (2.13)

This has the same form as Eq. 2.5 which we already know to be satisfied by a
harmonic motion.

With reference to standard mathematics texts, the general solution to a second order
linear differential equation of this kind is a linear combination of two independent so-
lutions, in this case cos(wot) and sin(wot). (A criterion for solutions to be independent
is that the functions be orthogonal which means, in this context, that the integral of the
product of the two functions over one period is zero.) The general solution is a linear
combination of the two independent solutions, i.e., £(t) = C cos(wot) + S sin(wp)?,
where C and S are constants. The physical meaning of C is the displacement at = 0,
C = £(0), and Swy is the initial particle velocity, £(0). We can replace C and S by
two other constants A and ¢ defined by C = A cos(¢) and § = Asin(¢), and the

solution can then be written in the familiar form
£(t) = A cos(wpt — @), (2.14)

which is the harmonic motion discussed above, where A is the amplitude and ¢
the phase angle. The motion is uniquely specified by the initial displacement and
the initial velocity in terms of which A and ¢ can be expressed, as indicated above.
Actually, the displacement and velocity at any other time can also be used for the
determination of A and ¢.

Example

A harmonic motion has the angular frequency wy = 400 sec™l. Att = 0 the dis-
placement is 10 cm and the velocity is 20 cm/sec. Determine the subsequent motion.
What are the amplitudes of displacement, velocity, and acceleration?

Denote the displacement and velocity of the oscillator at + = 0 by £(0) and u(0)
(initial conditions) which in our case are 10 cm and 20 cm/sec.
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We start with the general expression for the harmonic displacement § = A cos
(wot — ). It contains the two constants A and ¢ which are to be determined. Thus,
with ¢t = 0, we obtain,

§(0) = A cos(¢)
u(0) = Awg sin(¢)

and
tan(¢) = u(0)/[wo§(0)], A =§(0)/ cos(¢p) = §(0)/1 + tan(¢).

Inserting the numerical values we find

tan(¢) = 1/200 and A = 104/1 + (1/200)2 ~ 10[1 + (1/2)(1/200)?].

The subsequent displacement is £(¢) = A cos(wot — ¢).

Comment. With the particular initial values chosen in this problem the phase angle
is very small, and the amplitude of oscillation is almost equal to the initial displace-
ment. In other words, the oscillator is started out very nearly from the maximum value
of the displacement and the initial kinetic energy of the oscillator is much smaller
than the initial potential energy. How should the oscillator be started in order for the
subsequent motion to have the time dependence sin(wot)?

2.2.2 The ‘Real’ Spring. Compliance

The spring constant depends not only on the elastic properties of the material in
the spring but also on its length and shape. In an ordinary uniform coil spring, for
example, the pitch angle of the coil (helix) plays a role and another relevant factor
is the thickness of the material. The deformation of the coil spring is a complicated
combination of torsion and bending and the spring constant generally should be
regarded as an experimentally determined quantity; the calculation of it from first
principles is not simple.

The linear relation between force and deformation is valid only for sufficiently small
deformations. For example, for a very large elongation, the spring ultimately takes
the form of a straight wire or rod, and, conversely, a large compression will make it
into a tube-like configuration corresponding to a zero pitch angle of the coil. In both
these limits, the stiffness of the spring is much larger than for the relaxed spring.

It has been tactily assumed that the spring constant is determined from a static
deformation. Yet, this constant has been used for non-static (oscillatory) motion.
Although this is a good approximation in most cases, it is not always true. Materials
like rubber and plastics (and polymers in general) for which elastic constants depend
on the rate of strain, the spring constant is frequency dependent. For example,
there exist substances which are plastic for slow and elastic for rapid deformations
(remember Ssilly putty’?). This is related to the molecular structure of the material
and the effect is often strongly dependent on temperature. A cold tennis ball, for
example, does not bounce very well.

In a static deformation of the spring, the inertia of the spring does not enter. If
the motion is time dependent, this is no longer true, and another idealization is the
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omission of the mass of the spring. This is justified if the mass attached to the spring
is much larger than the spring mass. The effect of the spring mass will be discussed
shortly.

The inverse of the spring constant K is called the compliance

C=1/K. (2.15)

It is proportional to the length of the spring. Later, in the study of wave motion on
a spring, we shall introduce the compliance per unit length.

Frequently, several springs are combined in order to obtain a desired resulting
spring constant. If the springs are in “parallel,” the deformations will be the same for
all springs and the restoring forces will add. The resulting spring constant is then the
sum of the individual spring constants; the resulting spring will be ‘harder.” If the
springs are in ‘series, the force in each spring will be the same and the deformations
add. The resulting compliance is then the sum of the individual compliances; the
resulting combined spring will be ‘softer’ than any of the individual springs.

Effect of the Mass of the Spring

As already indicated, the assumption of a mass-less spring in the discussion of the
mass-spring oscillator is of course an idealization and is not a good assumption unless
the spring mass m is much smaller than the mass M of the body attached to the spring.
This shows up as a defect in Eq. 2.13 for the frequency of oscillation, wy = /K /M.
According to it, the frequency goes to infinity as M goes to zero. In reality, this
cannot be correct since removal of M still yields a finite frequency of oscillation of the
spring alone. This problem of the spring mass will be considered later in connection
with wave propagation and it will be shown that for the lowest mode of oscillation,
the effect of the spring mass m can be accounted for approximately, if m/M << 1,
by adding one-third of this mass to the mass M in Eq. 2.13. Thus, the corrected
expression for the frequency of oscillation (lowest mode) is

K
0o ~ S — (2.16)
M+m/3 JT+m/3M

For an isothermal change of state of a gas, the relation between pressure P and
volume V is simply PV = constant (i.e., dP/P = —dV/V). For an isentropic
(adiabatic) change, this relation has to be replaced by dP/P = —y(dV/V), where
y is the specific heat ratio C ),/ C,, which for air is ~1.4.

Air Spring

Consider a vertical tube of length L and closed at the bottom and with a piston
riding on the top of the air column in the tube. If the piston is displaced into the tube
by a small among &, the volume of the air column is changed by dV = — A&, where
A is the area of the tube. On the assumption that the compression is isentropic, the
pressure change will be d P = y (PA/ V)& and the corresponding force on the piston
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will oppose the displacement so that F = —y (PA?/V)&. This means that the spring
constant of the air column is

K =y(PA2/V) = y(PA/L), (2.17)

where L = V/Aisthelength of the tube. The spring constantis inversely proportional
to the length and, hence, the compliance C = 1/K is proportional to the length.

After releasing the piston, it will oscillate in harmonic motion with the angular
frequency /K /M. As will be shown later, the adiabatic approximation in a situation
like this is valid except at very low frequencies. By knowing the dimensions of the
tube and the mass M, a measurement of the frequency can be used as a means of
determining the specific heat ratio y. A modified version of this experiment, often
used in introductory physics laboratory, involves a flask or bottle with a long, narrow
neck in which a steel ball is used as a piston.

For a large volume change, the motion will not be harmonic since the relation
between the displacement and the restoring force will not be linear. Thus, with the
initial quantities denoted by a subscript 1, a general displacement & yields a new
volume Vo = Vj — A§ and the new pressure is obtained from Py sz =P Vly. The
restoring force A(P2— P1) nolonger will be proportional to & and we have a non-linear
rather than a linear oscillator.

2.2.3 Problems

1. Static compression and resonance frequency
A weight is placed on top of a vertical spring and the static compression of the spring is
found to be &5;. Show that the frequency of oscillation of the mass-spring oscillator is
determined solely by the static displacement and the acceleration of gravity g.

2. Frequency of oscillation
A body of mass m on a horizontal friction-less plane is attached to two springs, one on
each side of the body. The spring constants are K1 and Ko. The relaxed lengths of each
spring is L. The free ends of the springs are pulled apart and fastened to two fixed walls
a distance 3L apart.
(a) Determine the equilibrium position of the body.
(b) What is the frequency of oscillation of the body about the equilibrium position?
(c) Suppose that the supports are brought close together so that the their separation
will be L/2. What, then, will be the equilibrium position of M and the frequency of
oscillation?

3. Lateral oscillations on a spring
(a) In Example 2, what will be the frequency of small amplitude oscillations of M in a
direction perpendicular to the springs?
(b) Suppose that the distance between the end supports of the spring equals the length
of the spring so that the spring is slack. What will be the restoring force for a lateral
displacement & of M? Will the oscillation be harmonic?

4. Initial value problem

The collisions in Example 8 in Ch.11 are inelastic and mechanical energy will be lost in
a collision. The mechanical energy loss in the first collision is

p2/2m — p%/2(M +m) = (p?/2m)(M/(M + m))
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and in the second
P2 /2(M +m) — p>/2(M + 2m).
(a) Show that the two energy losses are the same if m/M = 1+ +/2. Compare the two
energy losses as a function of m/M.
(b) Suppose that n shots are fired into the block under conditions of maximum amplitude

gain as explained in Example 8. What will be the amplitude of the oscillator after the
n:th shot?

2.3 Free Damped Motion of a Linear Oscillator

2.3.1 Energy Considerations

The mechanical energy in the harmonic motion of a mass-spring oscillator is the
sum of the kinetic energy M u?/2 of the mass M and the potential energy V of the
spring. If the displacement from the equilibrium position is &, the force required for
this displacement is K&. The work done to reach this displacement is the potential
energy

£
V(€) =/0 K&de = K&2/2. (2.18)

In the harmonic motion, there is a periodic exchange between kinetic and potential
energy, each going from zero to a maximum value E, where E = Mu?/2 + K&2/2
is the total mechanical energy. In the absence of friction, this energy is a constant of
motion.

To see how this follows from the equation of motion, we write the harmonic oscil-
lator equation (2.13) in the form

Mi + K& =0, (2.19)

where u = £ is the velocity, and then multiply the equation by u. The first term in
the equation becomes Muti = d/dt[Mu?/2]. In the second term, which becomes
Kué, we use u = £ so that it can be written K&& = d/dt[K£2/2]. This means that
Eq. 2.19 takes the form

d/dt[Mu®/2 + KE%/2] = 0. (2.20)

The first term, Mu2/2, is the kinetic energy of the mass M, and the second term,
K£2/2, is the potential energy stored in the spring. Each is time dependent but the
sum, the total mechanical energy, remains constant throughout the motion. Although
no new physics is involved in this result (since it follows from Newton’s law), the
conservation of mechanical energy is a useful aid in problem solving.

In the harmonic motion, the velocity has a maximum when the potential energy is
zero, and vice versa, and the total mechanical energy can be expressed either as the
maximum kinetic energy or the maximum potential energy. The average kinetic and
potential energies (over one period) are the same.

When a friction force is present, the total mechanical energy of the oscillator is no
longer conserved. In fact, from the equation of motion Mu + K& = —Ru it follows
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by multiplication by u (see Eq. 2.20) that
d/dt{Mu®/2 + K&2/2] = —Ru>. (2.21)

Thus, the friction drains the mechanical energy, at a rate —Ru?, and converts it
into heat.*

As a result, the amplitude of oscillation will decay with time and we can obtain
an approximate expression for the decay by assuming that the average potential and
kinetic energy (over one period) are the same, as is the case for the loss-free oscillator.
Thus, with the left-hand side of Eq. 2.21 replaced by d (M (u®)1/dt, and the right-hand
side by R(u?), the time dependence of (u?) will be

(®)?) ~ (u(0)*ye R/M1, (2.2)

The corresponding rms amplitude then will decay as exp[—(R/2M)t].

2.3.2 Oscillatory Decay

After having seen the effect of friction on the time dependence of the average energy,
let us pursue the effect of damping on free motion in more detail and determine the
actual decay of the amplitude and the possible effect of damping on the frequency of
oscillation.

The idealized oscillator considered so far had no other forces acting on the mass
than the spring force. In reality, there is also a friction force although in many cases
it may be small. We shall assume the friction force to be proportional to the velocity
of the oscillator. Such a friction force is often referred to as viscous or dynamic.

Normally, the contact friction with a table, for example, does not have such a simple
velocity dependence. Often, as a simplification, one distinguishes merely between a
‘static’ and a ‘dynamic’ contact friction, the magnitude of the latter often assumed to
be proportional to the magnitude of the velocity but with a direction opposite that of
the velocity. The ‘static’ friction force is proportional to the normal component of the
contact force and points in the direction opposite that of the horizontal component
of the applied force.

A friction force proportional to the velocity can be obtained by means of a dashpot
damper, as shown in Fig. 2.5. It is in parallel with the spring and is simply a ‘leaky’
piston which moves inside a cylinder. The piston is connected to the mass M of the
oscillator and the force required to move the piston is proportional to its velocity
relative to the cylinder (neglecting the mass of the piston). The cylinder is attached
to the same fixed support as the spring, as indicated in Fig. 2.5. The fluid in the
cylinder is then forced through a narrow channel (a ‘leak’) between the piston and
the cylinder and it is the viscous stresses in this flow which are responsible for the
friction force. Therefore, this type of damping is often referred to as viscous.

The friction on a body moving through air or some other fluid in free field will be
proportional to the velocity only for very low speeds and approaches an approximate
square law dependence at high speeds.

“When the concept of energy is extended to include other forms of energy other than mechanical, the
law of conservation of energy does bring something new, the furst law of thermodynamics which can be
regarded as a postulate, the truth of which should be considered as an experimental fact.
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Figure 2.5: Oscillator with dash-pot damper.

With a friction force proportional to the velocity, the equation of motion for the
oscillator becomes linear so that a solution can be obtained in a simple manner. For dry
contact friction or any other type of friction, the equation becomes non-linear and
the solution generally has to be found by numerical means, as will be demonstrated
in Section 2.7.3.

With d&/dt = &, we shall express the friction force as ?Ré and the equation of
motion for the mass element in an oscillator becomes Mé = —K& — R& or, with
K/M = 3,

Free oscillations, damped oscillator
E+ (R/M)E + wie =0
£(t) = Ae™ 7" cos(wt — ¢) : (2.23)

y = R/2M, wy =g — 2

The general procedure to solve a linear differential equation is aided considerably
with the use of complex variables (Section 2.3.3). For the time being, however, we
use a ‘patchwork’ approach to construct a solution, making use of the result obtained
in the decay of the energy in Eq. 2.22 from which it is reasonable to assume that
the solution £(7) will be of the form given in Eq. 2.23, where y, and wj, are to be
determined. Thus, we insert this expression for £(¢) into the first equation in 2.23
and write the left-hand side as a sum of sin(wj,?) and cos(w(t) functions. Requiring
that each of the coefficients of these functions be zero to satisfy the equation at all
times, we get the required values of y and o, in Eq. 2.23. Actually, the value of y is
the same as obtained in Eq. 2.22. The damping makes the |, lower than wy.

When there is no friction, i.e., y = 0, the solution reduces to the harmonic motion
discussed earlier, where A is the amplitude and ¢ the phase angle. The damping
produces an exponential decay of the amplitude and also causes a reduction of the
frequency of oscillation. If the friction constant is large enough to that wj, = 0, the
motion is non-oscillatory and the oscillator is then said to be critically damped. 1f
Y > wo, the frequency w(, formally becomes imaginary and the solution has to be
reexamined, as will be done shortly. As it turns out, the general solution then consists
of a linear combination of two decaying exponential functions.

2.3.3 Use of Complex Variables. Complex Frequency

With the use of complex variables in solving the damped oscillator equation, there is
no need for the kind of patchwork that was used in Section 2.3.2. We merely let the
mathematics do its job and present us with the solution.



OSCILLATIONS 29

It should be familiar by now, that the complex amplitude & (w) of £ (¢) is defined by
E(1) = R{E(@)e ). (2.24)

The corresponding complex amplitudes of the velocity and the acceleration are
then —iwé (w) and —w2&(0) and if these expressions are used in Eq. 2.23 we obtain
the following equation for w

o’ + i2y — a)(Z) =0 (2.25)

in which y = R/2M.
Formally, the solution to this equation yields complex frequencies

o=—iy +,/0? -y (2.26)

The general solution is a linear combination of the solutions corresponding to the
two solutions for w, i.e.,

E(t) = e V'R{A 1€/ + Age @0, (2.27)

where w, = V@? —y2 and A; and Ay are complex constants to be determined
from initial conditions. We distinguish between the three types of solutions which
correspond to y < wp, ¥ > wp, and ¥y = wy.

Oscillatory decay, y < wo. In this case, wy, is real, and the oscillator is sometimes
referred to as underdamped; the general solution takes the form

£(1) = Ae " cos(wyt — @) (2.28)

which is the same as in Eq. 2.23. The constants A and ¢ are determined by the initial
conditions of the oscillator.
Overdamped oscillator, y > . The frequency w;, now is purely imaginary,

w)y =i,/ y? — @3, and the two solutions to the frequency equation (6.18) become

wp =—i(y —\/y2—w}) = —in

w_ = —i(y +/y%— 30 = —iys. (2.29)

The motion decays monotonically (without oscillations) and the corresponding gen-
eral solution for the displacement is the sum of two exponential functions with the
decay constants y; and ys,

E(t) = Cre " + Coe™ ™, (2.30)

where the two (real) constants are to be determined from the initial conditions.
Critically damped oscillator, y = wo. A special mention should be made of

the ‘degenerate’ case in which the two solutions to the frequency equation are the

same, i.e., when y1 = yo = wp. To obtain the general solution for & in this case
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requires some thought since we are left with only one adjustable constant. The general
solution must contain two constants so that the two conditions of initial displacement
and velocity can be satisfied (formally, we know that the general solution to a second
order differential equation has two constants of integration). To obtain the general
solution we can proceed as follows.

We start from the overdamped motion & = Cy exp(—y11)+Ca exp(—yat). Letyo =
y1+A and denote temporarily exp(—y2t) by f (y2, 1). Expansion of this function to the
first orderin T yields f(y2, 1) = f(y1,1)+(@f/0A)0A = exp(—y1t) —tAexp(—yit).
The expression for the displacement then becomes & = (C1 + Co) exp(—y1t) —
t(C2A) exp(—y1t), or

£ = (C + Diye ™", (2.31)

where C = C1+Csand D = —C3A, Cs being adjusted in such a way that D remains
finite as A — 0. Direct insertion into the differential equation E+2yE + a)gé =0
(Eq. 2.23) shows that this indeed is a solution when y = wy.

In summary, the use of complex amplitudes in solving the frequency equation
(6.18) and accepting a complex frequency as a solution, we have seen that it indeed
has a physical meaning; the real part being the quantity that determines the period of
oscillation (for small damping) and the imaginary part, the damping. In this manner,
the solution for the displacement emerged automatically from the equation of motion.

2.3.4 Problems

1. Oscillatory decay of damped oscillator
The formal solution for the displacement of a damped oscillator in free motion is given
in Eq. 2.27, in which Aj and Ag are two independent complex constants, each with a
magnitude and phase angle. Show in algebraic detail that the general solution can be
expressed as in Eq. 2.28, in which A and ¢ are real constants.

2. Critically damped oscillator. Impulse response

In the degenerate case of a damped oscillator when y = wy so that a)6 = 0, the general
solution for the displacement is

E(t) = (A + Bt)e™ ™', (2.32)

where A and B are constants to be determined by the initial conditions.

(a) Prove this by direct insertion into the equation of motion.

(b) The oscillator, initially at rest, is given a unit impulse at 1 = 0. Determine the
subsequently motion.

3. Paths in the complex plane
It is instructive to convince oneself that as y increases, the two solutions for the complex
frequency in Example 9 in Ch.11 follow along circular paths in the complex plane when
the motion is oscillatory. They meet on the negative imaginary axis when the damping
is critical, i.e., ¥ = wyp, and then move apart in opposite direction along the imaginary
axis. Sketch in some detail the paths and label the values of y at critical points, as you
go along.

4. Impulse response. Maximum excursion
The oscillator in Example 9 in Ch.11 is started from rest by an impulse of 10 Ns. For
the underdamped, critically damped, and overdamped conditions in (a) and (c),
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(a) determine the maximum excursion of the mass element and the corresponding time
of occurrence and
(b) determine the amount of mechanical energy lost during this excursion.

5. Overdamped harmonic oscillator
(a) With reference to the expressions for the two decay constants in Eq. 2.29 show that
if y >> wo we obtain y; & K/R and y5 ~ R/M.
(b) What is the motion of an oscillator, started from rest with an initial displacement
£(0), in which R is so large that the effect of inertia can be neglected?
(c) Do the same for an oscillator, started from & = 0, with an initial velocity u(0), in
which the effect of the spring force can be neglected in comparison with the friction
force.

2.4 Forced Harmonic Motion

2.41 Without Complex Amplitudes

To analyze the forced harmonic motion of the damped oscillator, we add a driving force
F(t) = |F|cos(wt) on the right-hand side of Eq. 2.23. The corresponding steady
state expression for the displacement is assumed to be & = || cos(wt — ¢). Inserting
this into the equation of motion, we get for the first term —MP|E| cos(wt — @),
for the second, —Rw|&| sin(wt — ¢), and for the third, K|&|cos(wt — ¢). Next, we
use the trigonometric identities cos(wt — ¢) = cos(wt) cos ¢ + sin(wt) sin¢ and
sin(wt — ¢) = sin(wr) cos ¢ — cos(wt) sin ¢ and express each of these three terms
as a sum of cos(w?)- and sin(w?)-terms. Since we have only a cos(wt)-term on the
right-hand side, the sum of the sine terms on the left-hand side has to be zero in order
to satisfy the equation at all times and the amplitude of the sum of the cosine terms
must equal |F|. These conditions yield two equations from which || and ¢ can be
determined. Itis left as a problem to fill in the missing algebraic steps and show that

€| = |F|/w
\/R2 + (K/w— oM)?
tang = wR/(K — w’M). (2.33)

At very low frequencies, the displacement approaches the static value |£| ~ |F|/K
and is in phase with the driving force. At resonance, |§| = |F|/(wR) which means
that the velocity amplitude is || = | F|/R, with the velocity in phase with the driving
force. Atveryhigh frequencies where the inertia dominates, the phase angle becomes
~; the displacement is then opposite to the direction of the driving force.

A good portion of the algebra has been skipped here, and what remains is a de-
ceptively small amount. This should be kept in mind when it is compared with the
complex amplitude approach used in Section 2.4.2.

The driving force F(t) = |F|cos(wt) and the ‘steady state’ motion it produces
are idealizations since they have no beginning and no end. A realistic force would
be one which is turned on at time ¢ = 0, say, and then turned off at a later time.
This introduces additional motions, so called transients, which have to be added to
the steady state motion. An obvious indication of the shortcoming of the present
analysis is that it leads to an infinite displacement at resonance if the damping is zero.
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This will be clarified when we again analyze forced motion, this time with a general
driving force F () and the use of the impulse response of the oscillator (see Eq. 2.56).

2.4.2 With Complex Amplitudes

The use of complex amplitudes to solve the problem of the forced harmonic mass-
spring oscillator will now be demonstrated. We choose the driving force to be F(¢) =
|F| cos(wt). The corresponding complex amplitude is F(w) = |[F|exp(i¢) = |F|
since the phase angle ¢ is zero. The terms in the equation of motion for displacement
&(t) are replaced by the corresponding complex amplitudes and from what we have
said about these amplitudes for velocity and acceleration, this complex amplitude
equation of motion takes the form shown in Eq. 2.34,

Forced harmonic motion
(—®>M —iwR+ K)é(w) = F
E(w) = F/(K —&>M —iwR)
&1 = |FI/v/(K — @®M)2 + (wR)?

(2.34)

Thus, as has been remarked earlier, the differential equation for the displacement
&(t) is replaced by an algebraic equation for the complex amplitude &(w), as shown.
Since the amplitude of a complex number is a + ib = va? + b2, the expression for
the magnitude |£(w)] follows, i.e., the phase angle of the numerator in & (w) is zero
and the phase angle of the denominator is given by tan(¢y) = —wR/(K — ®>M).
The phase angle of the ratio is the difference between the two which means that the
phase angle of the displacement is given by

tan ¢ = — tan(dg) = wR /(K — 0> M). (2.35)

Asthe frequency goes to zero we note that || — |F|/K and ¢ — 0, corresponding
to the static displacement of the spring in the oscillator. As the frequency increases,
however, the amplitude |£| normally increases toward a maximum | F|/R at the res-
onance frequency wy = /K/M and then decreases toward zero with increasing
frequency. (For large values of R, corresponding to an overdamped oscillator, the
maximum turns out to be at = 0.) The phase angle goes to 7 (i.e., the displacement
has a direction opposite to that of the driving force).

Having obtained the complex amplitude, the time dependence of the displacement
is

§(1) = |&| cos(wt — ¢). (2.36)

It is sometimes convenient to introduce dimension-less quantities in discussing
results and we rewrite Eq. 2.35 accordingly. Thus, the normalized frequency is
Q = w/wy, where wy = /K/M is the resonance frequency. Furthermore, D =
R/woM = Rwo/K, which we call the loss factor or damping factor is a normalized
measure of the resistance. The inverse of D, Q = 1/D, is usually called the ‘Q-value’
of the oscillator (Q standing for ‘quality,” supposedly a term from the early days of
radio to describe the selectivity of circuits). As we shall see, it is a measure of the
sharpness of the response curve in the vicinity of the maximum. Furthermore, the



OSCILLATIONS 33

normalized displacement amplitude is expressed as £ /&', where §' = |F|/K (i.e., the
displacement obtained in a static compression of the spring with the force amplitude
|F|). In terms of these quantities, Eq. 2.35 takes the form

&l =&/ (1 — Q2)% + (DQ)?
tang = D/ (1 — Q2), (2.37)

where Q = w/wy, D = woR/K = R/(woM), and &' = |F|/K.
At resonance, = 1, we have |x|/x" = 1/D = Q (i.e., the displacement |x| is Q
times the ‘static” displacement §" at 2 = 0).

Complex Spring Constant

The equation of motion (2.34) can be brought into the same form as for the friction-
less oscillator if we introduce a complex spring constant K. = K — iwR, in which
case the complex amplitude equation of motion becomes (—’M + K )E = F.

2.4.3 Impedance and Admittance

The impedance Z of the oscillator is the ratio of the complex amplitudes of the driving
force and the velocity, Z(w) = F(w)/u(w). Itis a complex number Z = |Z| exp(iy))
with the magnitude |Z| and the phase angle 1. If the phase angle of F is zero, the
phase angle of the complex velocity u(w) becomes ¢ = —1.

With u(w) = —iwé(w), it follows from Eq. 2.34 that

Impedance of an oscillator
u(w) = F(w)/Z(w) ; (2.38)
Z=R—ioM+iK/o=R+i(K/w)l— (w/wp)®!l=R+iX

where wg = /K /M. The magnitude and phase angle of the impedance are given by

1Z| = VRZ + X2
tany = X/R, (2.39)

where R is the resistance and X = K/w — @M, the reactance of the oscillator. At
the resonance frequency, we have X = 0 and the impedance is purely resistive.
The velocity is then in phase with the driving force. At frequencies much below the
resonance frequency, the impedance is dominated by the spring and the displacement
is £ ~ F/K, the same as in a static deformation and ¢ = 7 /2. The displacement is
then in phase with the force and the velocity runs ahead of it by the angle ~m /2 (the
phase angle of velocity is —¢ = —m/2). At frequencies above the resonance, inertia
dominates and we get  ~ — /2; the phase angle of velocity is then a lag of /2.

The magnitude of the velocity amplitude is the ratio of the magnitudes of the
driving force and the impedance, and the phase angle is the difference between the
phase angles of force and the impedance.

The inverse of the impedance is called the admittance or sometimes the mobility,
Y = 1/Z. The real and imaginary parts of Y are called the conductance C and the
susceptance S, Y = C +i8.
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One useful aspect of these concepts is that the impedance or admittance of several
mechanical components can be determined in terms of the impedances (admittances)
of the components, which are normally known in advance. For example, if two
mechanical oscillators are in “parallel” in such a way that their displacements are the
same, the total driving force will be the sum of the individual forces required to drive
each oscillator separately and the impedance of the combination is the sum of the
individual impedances.

2.4.4 Power Transfer

With a driving force F(t) = |F|coswt and the velocity of the oscillator u(f) =
lu| cos(wt — @), the time average power delivered by the force is

T
M=(1/T) / F(u(t)dt. (2.40)
0

Using the identity cos Acos B = (1/2) cos(A + B) + (1/2) cos(A — B) we have
cos wt cos(wt — @) = (1/2) cosLwt — ¢p) + (1/2) cos ¢. The first of these terms does
not contribute to the time average and

1 = (1/2) |F||u| cos ¢. (2.41)

With |F| given, the complex amplitude analysis yields |u| and ¢ so that IT can be
calculated. If | F| and |u| are rms values, the factor 1/2 should be removed.

If we introduce F = Zu and |Z| cos = |Z| cos ¢ = R, it follows that the power
can be written IT = (1/2)R|u|>.

Frequently, the power is expressed directly in terms of the complex amplitudes
of F and u, and we include also this version, as follows. After having obtained the
complex amplitude of a quantity, such as velocity u(w), the real time function is given
by u(t) = Mu(w) exp(—iwt)}. It can also be expressed as

u(t) = (ue ' +u*el® )2, (2.42)

where u* is the complex conjugate of u (see Appendix B). The time average of the
power is

I = (F(Ou(®)) = (1/4)((Fe ™" + F*e' ") (ue™*" + u*e'®"))
= (1/4)(Fu* + F*u) = (1/2R{Fu*). (2.43)

The time average of the terms containing time is zero. If rms values are used in
the last expression, the factor 1/2 should be eliminated.
If we introduce F = Zu into the equation, we get for the power

M= (/2R Zuu*} = (1/2)R[ul> (ju| rms), (2.44)

where we have used uu* = |u|%, R{Z} = R. Again, if the rms values are used, the
factor (1/2) should be removed.
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2.4.5 Acoustic Cavity Resonator (Helmholtz Resonator)

The derivation of the spring constant of an air spring in Eq. 2.17 for a uniform tube
can easily be extended to an arbitrarily shaped air volume. In particular, consider the
volume of a bottle or flask, as shown in Fig. 2.6. The volume of the flask is V, the
MY TUEN )
-I"."rl"'r’!'\‘rl"r s

A

Figure 2.6: Acoustic cavity resonator (Helmholtz resonator).

area of the neck, A, and the length of the neck is £. We are all familiar with how to
make a bottle ‘sing” by blowing across its mouth exciting the (fundamental) mode of
oscillation. The resonator, often referred to as a Helmholtz resonator,® behaves in
much the same way as a mass-spring oscillator with the air in the neck representing
the mass and the air in the volume V acting like a spring.

With the density of the air denoted p, the mass in the neck is M = Ap¥. There is
experimental evidence that the compression of the air in the volume V is adiabatic
and the relation between the pressure and the volume is then PV? = const, where
y = C,/Cy is the ratio of the specific heats at constant pressure and constant volume.
For air it is ~1.4. From this equation of state, it follows that a change in volume
dV produces a change in pressure dP such that dP/P = —ydV/V. For a small
displacement of the air (inwards) &, we get dV = — A& so that dP = (y AP/V)&. The
restoring force on the mass plug is AdP = (y A2P/V)& and the equation of motion
of the air plug is Alpé = —(y A2P/V)E, or

E+wlt=0, (2.45)

where

wo =/ (Y P/p)(AJVE) = c\/A/ (VD). (2.46)

The quantity c is the speed of sound in air, ¢ = /y P/p, a value which will be
derived in the next chapter.

The frequency obtained here is the so-called fundamental frequency, correspond-
ing to the lowest mode of oscillation in which the sound pressure throughout the
main volume of the bottle can be considered approximately uniform. Actually, in the
mass-spring oscillator we made the similar assumption that the force is the same along
the spring (i.e., the force transmitted from the beginning of the spring is the same as
that which appears at the end of the spring). This assumption is a consequence of the
omission of the mass of the spring.

Like any other enclosure (such as a concert hall), the bottle has many other acoustic
modes of oscillation with corresponding characteristic frequencies. We shall have
occasion to discuss this problem in later chapters.

5Hermann Ludwig Ferdinand von Helmholtz, 1821-1894, Baron, German physician, physicist, math-
ematician, and philosopher.
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The expression for the resonance frequency in Eq. 2.46 can be improved somewhat
by including an end correction to the length € which is of the order of the neck
diameter. It accounts for the ‘induced mass’ in the oscillatory flow in the vicinity of
the two ends of the neck.

2.4.6 Torsion Oscillator

A rod, clamped at one end, is acted on by a torque applied at the other end. It
produces an angular displacement about the axis proportional to the torque, atleast for
sufficiently small displacements. The ratio of the torque and the angular displacement
at the point of application of the torque is called the torsion constant t. It is the
analog of the spring constant and generally should be regarded as an experimentally
determined quantity, although it readily can be calculated for a uniform circular rod
in terms of the elastic shear modulus G of the rod. If the length of the rod is L and
the radius a and if the angular displacement over this length is 6, the shear stress at
a radial position r is Grf/L. The corresponding torque is then

t = [ (Gr?0/L)2nrdr = pO
B = (wa/2L)G. (2.47)

The physical dimension of the spring constant is force divided by length and for the
torsion constant B, it is torque per unit angle, i.e., force multiplied by length, since
the angle is dimension-less.

The shear modulus G in N/m? is, for
Steel: 8.11 x 101°
Aluminum: 2.4 x 100
Tungsten, drawn: 14.8 x 1010,

To apply this result to a torsional oscillator, we consider a vertical rod which is held
fixed at its upper end and supports a body, such as a circular disc or a dumbbell, at its
lower end. The moment of inertia I of this body is large enough so that the moment
of inertia of the rod can be neglected. The body is given an angular displacement 6
and then released. The equation for 6 in the ensuing motion is

16 = —B6
0+ wif =0, (2.48)

where wy = /B/I. Thisis the harmonic oscillator equation, and the time dependence
of the rotation angle 6 is analogous to displacement in the mass-spring oscillator.

With the ‘rod” being a thin wire or filament, the torsion constant can be made
extremely small, and minute torques can be measured from the angular deflection.
The deflection can be ‘amplified” by means of a light beam reflected from a mirror
attached to the oscillator. This technique has been used in sensitive galvanometers
and for the measurement of light pressure. In the light pressure experiment it is
advantageous to pulse the light at a frequency equal to the natural frequency of the
torsion oscillator to further increase the sensitivity.
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2.4.7 Electro-mechanical Analogs

In this section we shall comment briefly on the analogy between a mechanical and an
electrical oscillator “circuit.” The former is simply a mass M connected to a spring with
spring constant K and acted on by a friction force Ru, proportional to the velocity u.
This friction force can be provided by a ‘dashpot’ damper, as described in connection
with Eq. 2.23.

The driving force F(z) is applied to M, and with &(¢) being the displacement of M
from the equilibrium position and u = £ the velocity, the equation of motion is

Mi+Ru+Kté=F or ME+RE+KE=F. (2.49)

The analogous electrical system consists of an inductance L, a resistance R, and
a capacitance C, in series and a driving voltage V (r). With the current through the
circuit denoted I (r) and the charge on the capacitor by ¢ (r), we have I = ¢ and the
voltages across the inductance, resistance, and the capacitance are LI, RI,and q/C,
respectively. The sum of these must equal the applied voltage V (z), i.e.,

LI+RI+q/C=V or Lij+RG+(1/C)q=V. (2.50)

A comparison of these equations leads to the following correspondence between
mechanical and electrical quantities: Displacement <> electric charge, velocity <>
current, mass <> inductance, mechanical resistance <> electrical resistance, compli-
ance <> capacitance, and force <> voltage.

Other equivalent quantities are

wo = K/M = J/1/(MC) <= wy = +/1/(LC)

Kinetic energy: M u?/2 — Magnetic energy: LI 2/9

Potential energy: K&2/2 = £2/(2C) <= Electric energy: q%/2C

Power input: Fu <= Power input: VI

2.4.8 Problems

1. Vibration isolation
In Example 11 in Ch.11 it is stated that the driving force transmitted to the floor was
smaller than the driving force if the driving frequency is larger than the resonance
frequency by a factor /2. Prove this statement and plot a curve of the ratio of the
transmitted force and the driving force as a function of € = w/wg. This is an important
problem in noise and vibration control.

2. Power transfer
What is the time average of the oscillatory power generated by the imbalance of the fan
in Example 11 in Ch.11?

3. Admittance and power transfer
Eq. 2.40 indicates that the power transfer to an oscillator can be expressed as (1/2) R|u 12,
where |u| is the velocity amplitude. Show that the power can be written also as
(1/2)Y,|F|%, where Y, is the conductance, i.c., the real part of the admittance.

4. Helmbholtz resonator
A bottle with a diameter of D = 10cm and a height H = 20 cm has a neck with a
diameter d = 1 cm and a length 7 = 4 cm. What is the resonance frequency of the air
in this bottle? The speed of sound in air is ¢ = 340 m/sec.
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5. Reverberation of a Helmholtz resonator
The resonator mode in Problem 4 is excited by a pressure impulse. It is found that the
pressure amplitude decays by a factor of 10 in 10 full periods. What is the Q-value of
the resonator?

6. Forced harmonic motion
Fill in the missing algebraic steps to prove the expression for the steady state response
of an oscillator in Eq. 2.33.

2.5 Impulse Response and Applications

Asalready pointed out, the steady state motion in Eq. 2.33 was produced by a harmonic
driving force F(¢) = |F|cos(wt) which is an idealization since it has no beginning
and no end. We now turn to the response of the oscillator to a more general and
realistic driving force.

We start by considering the motion of a damped mass-spring oscillator after it is
set in motion by an impulse I at time r = t’. We let the impulse have unit strength.
Since the impulse is instantaneous, the displacement immediately after the impulse
will be & = 0 and the velocity, £ = 1/M. In the subsequent motion, the oscillator is
free from external forces but influenced by a spring force and a resistive force —Ru
proportional to the velocity u. Then, for an underdamped oscillator, the displacement
will be of the form given in Eq. 2.23, i.e.,

E(t) = Ae " cos(wyp), (2.51)

where y = R/2M, o), = ,/w% —y2, and wp = /K/M. As before, K is the spring
constant. The amplitude A and the phase angle ¢ are determined by the displacement
£ = 0 and the velocity § = 1/M att =1'.

In order to make the displacement zero at r = 1’ we must have ¢ = /2 which
means that the displacement must be of the form
£ = Aexp[—y(t —1")]sin[(w;,(t — 1')].
The corresponding velocity is
E=A exp[—y (t — t")][w], cos[w)(t — 1')] — y sin[w(,(t —")].
To make this velocity equal to 1/M at t = 1’ requires that A = 1/(Mw(). In
other words, the impulse response function, sometimes called the Green’s function
for displacement is

Impulse response function
h(t, 1) = (1/ohM) e=7 =) sinfwy(t — )] fort > 1 (2.52)
h(t,t')=0 fort <t

[y =R/2M - o) = \Jo§ — y2 - 0} = K/M].

The dependence on  and ¢’ is expressed through the combination (r —¢’) only (i.e.,
the time difference between the ‘cause’ and the ‘effect’). Since we accept the causality
principle that the effect cannot occur before the cause, we have added i(z, ') = 0
for t < ¢’ in the definition of the impulse response function A(t, t').
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2.5.1 General Forced Motion of an Oscillator

The reason for the particular importance of the impulse response function is that the
response to an arbitrary driving force can be easily constructed from it.

To prove this, we consider first the displacement resulting from two unit impulses
delivered at ¢ and #”. Although not necessary, we assume for simplicity that the
displacement and the velocity of the oscillator are zero when the first impulse is
delivered at r = ¢’. Then, by definition, the displacement that results at time ¢ is the
impulse response function A(t, t').

At the later time ¢ when the second impulse is delivered, the displacement and the
velocity are both different from zero. It should be realized, however, that the change
in the displacement produced by the second impulse does not depend on the state
of motion when the impulse is delivered (because the system is linear) and the total
displacement at time ¢ will be () = h(¢, t') + h(z,t”). If the impulses at ¢’ and ¢’
have the values I” and I”, the displacement at ¢t will be I’h(t, t') + 1"h(z,t").

We can now proceed to the displacement produced by a general driving force
F(t). The effect of this force is the same as that of a succession of impulses of
magnitude F(t") A" over the entire time of action of the force up to the time ¢. The
displacement, at time ¢, produced by one of these impulses is A (¢, t') F (t') At" with
an analogous expression for any other impulse; this follows from the discussion of
the impulse response function A(t,t'). The sum of the contributions from all the
elementary impulses can be expressed as the integral

Response to a driving force F (t)

£0) = [' h(t,)F()dt = [° F(t — Dh(x)dr (2.53)

[A(t,1): See Eq. 2.52. T =1 —1'].

The range of integration for ¢ is from —oo to ¢ to cover all past contributions.
Frequently, it is convenient to introduce a new variable, T =t — ¢/, in which case the
range of integration is from v = 0 to infinity, as indicated in Eq. 2.53.

The validity of this result relies on the linearity of the system so that the incremental
change of the displacement will be the same for a given impulse independent of the
state of motion when the impulse is delivered.

2.5.2 Transition to Steady State

As an example of the use of Eq. 2.53, we consider a driving force which is turned on
atr = 0 and defined by

F(t) = Focos(wt) t >0
F)=0 t<0O. (2.54)

Since the driving force is zero for t < 0, the lower bound of the range of integration
in Eq. 2.53 can be set equal to 0. Using the expression for the impulse-response
function in Eq. 2.52, we then get

t
£(t) = Ege V! / eV sin[wg (t — 1')] cos(wt’)dt’, (2.55)
0
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where & = Fy/(wyM) = A(a)% /@) and A = Fy/K. The integration is elementary
and it is left as a problem to show that
. 1

VI -2+ (DQ)?

E/A [cos(wt — @) — (wo/w()e” " cos(wyt — B)],  (2.56)

where Q = w/w, tang = DQ/(1 — @), tan B = y(1 + Q) /w)(1 — Q%), D =
R/(woM), and A = Fy/K.

The solution is the sum of two parts. The first, the steady state solution, has the same
frequency w as the driving force and its amplitude remains constant. The second part,
often referred to as the transient, decays exponentially with time and can be ignored
when yt >> 1; it has a frequency w), i.e., the frequency of free oscillations.

For small values of D, the maximum amplitude occurs very close to @ = w/wg = 1
but as the damping increases, the maximum shifts toward lower frequencies.

2.5.3 Secular Growth

There are several aspects of the solution in Eq. 2.56 that deserve special notice. One
concerns the response of an undamped oscillator when the frequency of the driving
force equals the resonance frequency, i.e., @ = wy. Our previous analysis dealt only
with the steady state response from the very start and, in the absence of damping,
yielded nothing but an infinite amplitude at resonance. The present approach shows
how the amplitude grows with time toward the infinite value at t = co. Withy =0,
i.e., D = 0and w, = wo, the integral in Eq. 2.55 can be evaluated in a straight-forward
manner and we obtain, with F/(woM) = Fowy/K = Awy,

t
&) = A/ sin[wo(t — t")] cos(wot)dt’ = A(wot/2) sin(wot). (2.57)
0

The amplitude of this motion grows linearly with time, secular growth, toward the
steady state value of inﬁnity.6

2.5.4 Beats Between Steady State and Transient Motions

If the frequency  of the driving force in Eq. 2.54 is not equal to the resonance
frequency of the oscillator and if the damping is sufficiently small, the transition to
steady state exhibits ‘beats’, i.e., variations in the amplitude. The beats result from
the interference between the steady state motion with the frequency w of the driv-
ing force and the transient motion with the frequency wj, of the free motion of the
oscillator (see Eq. 2.56). Both of these motions are present during the transition to
steady state. The curves shown refer to @ = 1.1w and the values of the damping
factor D = R/(woM) = 0.01 and 0.04 corresponding to the Q-values of 100 and 25.
The interference between the two motions periodically goes from destructive to con-
structive as the phase difference (0 — w()t ~ (w — wp)t between the two motions

6The general solution in Eq. 2.56 reduces to Eq. 2.57 for y = 0 and w = wy (i.e., 2 = 1). Actually, for
these values the expression becomes of the form 0/0 and we have to determine the limit value as y goes to
zero, using exp(—yt) ~ 1 — yt. Then, the steady state term is canceled out, and, since ¢ = B = /2 and
D = 2y /wy, the remaining term indeed reduces to Eq. 2.57.
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increases with time. With Aw = w — w), = 0.1 wy, it is increased by 27 in a time
interval Ar given by AwAt = 27 which, in the present case, yields 0.1 wj At = 27 or
At/ T§ ~ 10, where T & Ty is the period of free motion. Thus, At is the time interval
between two successive maxima or minima in the resulting displacement function,
which is consistent with the result shown in the figure.

At a driving frequency below the resonance frequency, a similar result is obtained.
For example, with @ = 0.9 wo, the curves are much like those in the figure except
that they start out in the positive rather than the negative direction.

If the driving frequency is brought sufficiently close to the resonance frequency,
the time interval between beats will be so large that the amplitude of the transient
will be damped so much that the beats will be less pronounced. For a more detailed
discussion of this question we refer to Example 13 in Ch.11.

2.5.5 Pulse Excitation of an Acoustic Resonator

A simple and instructive demonstration of beats involves an acoustic cavity resonator
exposed to repeated wave trains (pulse modulated) of sound.

A microphone in the cavity of the resonator measures the sound pressure and the
corresponding signal from the microphone can be displayed on one channel of a
dual beam oscilloscope. On the other channel can be shown the input voltage to
the loudspeaker which produces the incident sound. The amplitude of this sound is
constant during the duration of each pulse train.

The time dependence of the sound pressure in the resonator is quite different from
that of the incident wave. It starts to grow toward a steady state value, but before this
value has been reached, the incident pulse is terminated and the sound pressure in
the cavity starts to decay. This process is repeated for each pulse.

If the ‘carrier’ frequency of the incident sound is equal to the resonance frequency,
the growth and (exponential) decay of the sound pressure in the resonator are mono-
tonic. During the decay, the resonator re-radiates sound which can be heard as a
‘reverberation’ after the incident sound has been shut off.”

If the frequency of the incident sound is somewhat lower than the resonance
frequency, beats resulting from the interference of the free and forced oscillations
occur. A similar result is obtained if the carrier frequency is somewhat higher than
the resonance frequency. The sound pressure in the resonator is now much smaller
than that obtained at the resonance frequency.

2.5.6 Problems

1. Impulse response functions

Determine the impulse response functions of an overdamped and a critically damped
oscillator.

2. Steady state response of a harmonic damped oscillator

TResonators of this kind were built into the walls under the seats in some ancient Greek open air
amphitheaters.
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Carry out in detail the algebraic steps required to derive Eq. 2.33 for the displacement
of a harmonic oscillator driven by the a harmonic force F(t) = |F|cos(wt). Show also
that it is consistent with the steady portion of the solution in Eq. 2.56.
3. Forced motion of oscillator. Force of finite duration

Aforce driving a harmonic oscillator startsat = O and is of the form F (¢) = | F| cos(2mt/
T) fort < T /2 and zero at all other times. Determine the displacement of the oscillator
if () T = Tp/2, (b) T = Ty, and (c) T = 2Ty, where Ty is the resonance period of the
oscillator.

2.6 Fourier Series and Fourier Transform
We summarize in this section some well-known mathematical relations.

2.6.1 Fourier Series

As already mentioned, one of the reasons for the importance of the harmonic mo-
tion is that any periodic motion can be expressed as a sum of harmonic motions with
frequencies which are multiples of the fundamental frequency. For a rigorous dis-
cussion of this important result, we refer to standard mathematics texts. We shall
present here merely a brief review with examples.

Consider first a function F(t) = Cjcos(wit) + Cscos(2wit), the sum of two
harmonic functions, the first having the (fundamental) frequency w1 and the second,
the frequency 2w1. The function is periodic with the period 71 = 27 /w1 and it is
symmetric with respect to f (i.e., it is the same for positive and negative values of ).
With the cos-functions replaced by sin-functions,

F(t) would be anti-symmetric in ¢, changing sign with .

Varying the coefficient C; and Cy will produce different shapes of the function
F(1). Conversely, for a given F (1), the coefficients can be determined in the following
manner. To obtain C1 we multiply both sides of the equation by cos(w1 ) and integrate
over one period. The only contribution on the right-hand side will come from the
first term which is readily seen to be T1C;/2; the integral of the second term is
zero. Similarly, multiplying by cos(2w1t) and integrating yields 71Cs /2. Thus, C1 =
©@/T1) [ F(1) cos(wir) dt and Ca = (2/T1) f;}* F(z) coswi1) dt. In this example,
the mean value is zero. Had we added a constant term Cy, it would have been
expressed by Co = (1/T1) Ji}' F(1) dt.

We can proceed in analogous manner for a sum of an arbitrary number of har-
monic terms being mixtures of cos- and sin-functions, each term being expressed as
cos(nwit — ¢y,). Thus, with

F(t) =) aycos(not — ) (2.58)
0

the coefficients in the series can be expressed as
an/2 = (1) T0) fi| F(1)cos(uant — ) dt  (n > 0)
ap = (1/Ty) Jif F(dr. (2.59)

The mean value of the function is ag which corresponds to n = 0.
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The expansion of the periodic function F (¢) in Eq. 2.59 can be expressed differently
by use of Euler’s identity from which we have cos(nwt — ¢,,) = [exp(i (nwt — ¢p)) +
exp(—i(nwt — ¢,))1/2. By letting n be both positive and negative, we can account
for both the exponential terms in this expression and put

o0
F(t) = Z A, e et (2.60)
—00

where A, is complex. Comparing this expansion with that in Eq. 2.59 it follows that
with m being a positive number A,,, = (a,,/2) exp(i¢m) and A_,, = (@ /2) exp(—ipm).

The coefficients in the expansion (2.60) are obtained by multiplying both sides by
exp(inwit) and integrating over one period,

A, = (1/T) / F(t)e"®V dt. (2.61)

This expression has the advantage over Eq. 2.59 that it is automatically valid for
bothn = 0 and n # 0. The expansion (2.60) is often referred to as a ‘two-sided’
Fourier expansion and (2.59) as ‘one-sided.” The two expansions are compared in the
following example.

The Delta Function

Consider a square wave pulse of height H and width 7 such that the ‘area’is Ht = 1
and let t — 0 and H — o0 in such a way that Ht remains equal to 1. Such a pulse
is called a delta function and if it is located at r = 0, it is denoted by §(¢). It has the
property that it is zero for all values of t except at ¢+ = 0 where it is infinite in such a
way that [ 8(r)dt = 1. The integration can be extended from minus to plus infinity.

A very useful property of the delta function is [§(t)F(r)dt = F(0), the only
contribution to the integral coming from ¢t = 0 where §(¢) is not zero; the integral
then becomes F(0) [ 8(1)dt = F(0). Similarly,

/a(z — 1) F@)dt = £(1). (2.62)

A pulse train of delta functions similar to that in the example above can be expressed
as

F(t)=) 8(t—nT)) =) Ay " (2.63)

As before, the coefficients are obtained by integrating both sides over one period.
We select the period from —77/2 to T1/2 to obtain

T1/2 )
A, = (1/T1)/ 5()e" dr =1/ Ty, (2.64)
—11/2
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In other words, the coefficients in the expansion are all the same, 1/T7. Eq. 2.63
then becomes
F(t) = i e inert — l[1 + i(e‘i”‘“” + einerty = l[1 +2 i cos(nwt)]
- - Th - T1 1
—00 1 1
(2.65)
The first term corresponds to n = 0. The result is consistent with the solution in
the pulse train example above in the limit with Ht = 1 and t — 0.
In Chapter 7 we shall have occasion to use delta functions in the analysis of sound
radiation from point or line forces moving along a circle and simulating sound radiation
from a fan.

2.6.2 Fourier Transform

With reference to the pulse train example above, we shall explore what happens to
the Fourier series if the period 71 goes to infinity. We start with Eq. 2.65 which, with
w1 = 27y, is expressed as

Fourier series

F(t)= Z;’O% Fpe~t2mmt , (2.66)
Fu=(1/T) [T, F(He>™™ d

where vi = 1/T1 and n, an integer.

The separation vi = 1/ T of the frequencies of two adjacent terms can be made as
small as we wish by making T; large and the frequency nv; = v can be regarded as a
continuous variable. The average number of terms in the series that corresponds to
a small frequency interval Av is then Av/v; = T1Av. The sum over n can then be
replaced by a sum over the frequency intervals Av, with 71 Av terms in each.

With T going to infinity, the complex amplitude F, in Eq. 2.66 goes to zero in such
away that F, T is finite, which was demonstrated explicitly in the pulse train example
where we had F, Ty = Ht in the limit T — oco. We denote F,,T1 by F(v), where v
refers to the average frequency in the interval Av. The sum over n in Eq. 2.66 can
then be replaced by an integral over v with 71 Av terms in the frequency interval Av
as shown. Then, with 71 F,, in Eq. 2.66 replaced by F(v), we get

Fourier transform
F(t)= [%  F(v)e 2™ dy |, (2.67)
F(v) = [% F(t)e'*™dt

These two equations are often referred to as the Fourier transform pair. The
quantity F(v) is called the Fourier amplitude of F (¢). By using the frequency v rather
than the angular frequency in these equations, they become symmetrical without a
factor of 1/27 which otherwise would be needed in Eq. 2.67.

If F (1) = §(t —t'), the Fourier transform pair becomes

8t —1') = [% e 2T gy

S() = [ 8(1 — 1)el2™V dr = 2TV, (2.68)
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It should be kept in mind that F(v) is a complex number; the real physical sig-
nificance of it will become apparent shortly in our discussion of energy spectra. For
the time being, we merely comment on the meaning of F(v) for negative values of
v; thus, since F(¢) is real, it follows from Eq. 2.67 that F(—v) must equal F*(v) in
order for the sum of the terms for negative and positive v to be a real number, i.e.,

F(—v) = F*(v), (2.69)

where f* is the complex conjugate of f. We recall that the complex conjugate of

f=I1flexp(i¢)is f* = | flexp(—i¢) so that ff* = |[F(v)|? = |F(—v)|>.

Example

As an example, let F (7) be a single period of the square wave function with a height H,
awidth 7, and with the center at # = 0. Since the function is zero outside this region,
the Fourier integral extends from —7/2 to /2 and the complex Fourier amplitude
becomes, from Eq. 2.67,

F)=H 2 gy — (S
—7/2 X

) (2.70)

where X = wrv.
The quantity Ht is the area under the pulse. If this area is kept constant and equal
to 1 as T — 0, we get the delta function, as discussed above,

5(0 — ffooo e—i2nvt dv
F(v) = [ 8(t)e'*™dt = 1. (2.71)

It is important to notice that the infinitely narrow spike represented by the delta
function occurs at the precisely determined time r = 0. The Fourier amplitude F(v),
on the otherhand, is the same (=1) at all frequencies so the frequency is indeterminate.
To build a delta function, all frequencies have to be included with equal ‘weight.’
Conversely, a precisely determined frequency corresponds to a harmonic function
which extends over all times.

For a duration 7 of the pulse different from zero, the Fourier amplitude decreases
in an oscillatory manner toward zero as the frequency goes to infinity, as shown in
Eq. 2.70. We can define a characteristic width of F(v) by the frequency Av of the
first zero of F(v). It occurs where sin(X) = 7 (i.e.,atwtAv = 7 or tAv = 1). With
7 denoted by At, we obtain the relation

AtAv =1 (2.72)

which is sometimes called the uncertainty relation.

2.6.3 Spectrum Densities; Two-sided and One-sided

As already mentioned, the Fourier amplitude F(v) generally is a complex number.
The physical meaning of it becomes clear if we calculate its magnitude, or rather its
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square, |F |2 = F(v)F*(v) in terms of F(¢). The calculation is straight-forward
but it looks a little awkward because of all the integral signs required when we use
Eq. 2.67 for fv) and F*(v), the latter obtained merely by changing the sign of i in
the integrals.

The squared magnitude of the Fourier amplitude can then be written

o o i X ,
[F()? = / / F()e'?™ dt F(')e'>™ " dt’. (2.73)
—00 J—00

Integration over v yields

Energy relation
JENIFWPdv = [% [% FO)F@)dtdt [° e 2700 gy || (2.74)
= [C FOF@)8(t —t')dt' = [° F(t) dt

where we have used Eq. 2.68.

This illustrates the physical meaning of the Fourier amplitude. The right hand side,
apart from a constant, can be thought of as the total energy transfer to the system® and
on the left-hand side the same energy is expressed as a distribution over frequency
in terms of the Fourier spectrum density | F )2,

The (Fourier) spectrum density So(v) = | F (v) 12in Eq.2.74involves the integration
over frequency from —oo to oo and is often referred to as the two-sided spectrum
density. Since [F(v)|? = F(v)F*(v) is the same for positive and negative v, the
integration can be limited to only positive value of v, i.e.,

/oo [F()|2dv = 2/00 |F()|2dv = /oo S1(v)dv, (2.75)
—00 0 0

where S1v) = 289 (v) is the one-sided spectrum density.

Example. Fourier Spectrum of Oscillatory Decay

As an example, we calculate the Fourier spectrum |F (v) |2 of the oscillatory decay of
a damped harmonic oscillator started from rest with a given displacement F(0) = A
from equilibrium, as discussed in Section 2.3, Eq. 2.23. In this case F(z) stands for
the displacement of the oscillator,

F(t) = Ae™ " cos(wyt) (2.76)

fort > 0and F(r) = 0 fort < 0. As before, the frequency is w;, = ,/a)% — 2, where
w% = K /M and the decay constant y = R/2M.
Since F(t) = 0 for t < 0, the lower limit in the integral for the Fourier amplitude
F(v) (see Eq. 2.67) can be taken to be zero, so that the Fourier amplitude becomes
F@) = f()oo eVt COS(a)é)t)eiznw dt = (Fy/2) fooo[ei(w6)+w+i)/)l + e*i(wé,fwfi}/)t]

= Foly — io)/ (@] — o* + 2iyw). (2.77)

81f F (1) is an electric current flowing through a unit resistance, the integral is the total energy dissipated
in the resistance.
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The corresponding Fourier spectrum is then

Q2 4+ 12

|F)I* = (Fo/wo)? o e

(2.78)

where Q = w/wpand T’ = y /wy. The relationship between the width of the spectrum
and the ‘duration’ of the signal should be noticed as an example of the ‘uncertainty
principle,” the longer the duration of the signal, the narrower the spectrum.

2.6.4 Random Function. Energy Spectra and Correlation
Function

In our analysis of the motion of the linear oscillator, we started by considering a
harmonic driving force. This was followed by a study of the response to an impulse
and to an arbitrary driving force F(z).

In practice, however, the driving forces involved frequently vary with time in an
irregular or random manner, not expressible with a regular function of time, as indi-
cated schematically in Fig. 2.7. We encounter such a time dependence in practically
every aspect of acoustics. The force on a boundary from turbulent flow and the vi-
bration of a wheel rolling over an irregular road surface are typical examples. Often
a random oscillation is superimposed on a harmonic component. The vibration and
associated noise generated by a fan or compressor is an example. Musical wind in-
struments have noise components and the same holds true also for the the ‘attack’
sound by a violin. The interference of noise on transmission lines for communication
and for the detection of signals in general is a common experience.

There is also an intrinsic randomness associated with the thermal motion in matter.
For example, the motion of the electrons in a conductor gives rise to random fluctu-
ations in voltage which interfere with the detection of weak signals. Sometimes, this
requires experiments to be carried out at very low temperatures.

Not only the weather, but every aspect of our lives contains random components.
In a random function F(¢), illustrated schematically in Fig. 2.7, the value at a given
time cannot be predicted. Rather, the function has to be described in terms of its
statistical properties. In measurements, we have at our disposal a finite sample of the
function of length A and we can measure a statistical property of this sample, such as
the mean square value, and repeat the measurement for samples of different lengths.
In general, the values thus obtained depend on the sample length. In most cases of
practical interest, however, we find that there exists a sample length above which the
statistical properties do not change. If these are found to be independent of the time
at which the sample is taken, the function is called stationary. In what follows, such
a function will be assumed.

W c'i-\'«l f‘pﬂ; !‘.«J\..'"{-'w i Sk W ikt

NV
oy lf\o«fvllm-{ ¥
—

Figure 2.7: Random function of time with a sample of length A.
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Mean and Mean Square Value

The mean value of F(t) is

A
(F(t)) = (l/A)f F(t)dt. (2.79)
0

Frequently, the mean value is zero.
The mean square value is

A
(F2(1)) = (l/A)/ F2(t) dt. (2.80)
0

The corresponding root mean square value (rms) is F = /(F2(t)) which is usually
the quantity displayed by an instrument.

Since we deal with a finite sample of the function, it can be regarded as being zero
outside the interval A. This function then qualifies for a Fourier transform, and the
corresponding Fourier amplitude F(v) is given in Eq. 2.67.

The expression (2.74) involving the Fourier spectrum is still valid. If we divide
both sides by the sample length A, we obtain the mean square value of F(¢)

A/2 00 oo oo
(F2(0) = (1/A) / F2(0) di = / IF0)I?/A = / Ex(v)dv = / Ex(v)dv,
—AJ2 0

—00 —00

(2.81)
where Eo(v) = 2|F(v)|?/A is the two-sided and E1(v) = 2E5(v), the one-sided
power spectrum density of F(t). As before, we have then made use of |F W2 =
|F(—=v)|2 (recall [F(v)|2 = F(v)F*(v)). If in a measurement the sample length A
is increased, the value of |F(v)|2 will also increase, and if the sample length is long
enough (as we have assumed it to be), the increase will be proportional to A leaving
the power spectrum densities independent of A so that the integration can be carried
out to infinity.

In modern spectrum analyzers used in acoustics, an input signal F(¢) can be pro-
cessed in a number of different ways, and the power spectrum density function, for
example, can be determined and displayed after a short processing time of the order
of A.

Correlation Function

Another statistical property of F () which can readily be measured is the correlation
function

t+A/2
W(t) = (FOFE+1)) = (1/A) / F(OF(t +7)dt, (2.82)
1—A/2

where, as before, the angle brackets indicate time average (over a sufficiently long
interval A). If F(z) is a stationary random function, this average is independent of ¢
and is a function only of the time displacement t. To signify that F (z) and F (r417) refer
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to the same function F, ¥ () is often called the auto-correlation function and denoted
W11 (7). When two functions F1 and F» are involved, the quantity (Fi(¢) Fo(t + 1)) is
called the cross-correlation function and denoted W1o(7).

An important property of W (7) is that its value at T = 0 is the mean square value of
F, W(0) = (F2(r)). The correlation function is sometimes normalized with respect
to W(0) so that the value at T = 0 will be unity.

Using Eq. 2.69, we can express the correlation function in terms of the Fourier

amplitude F(v) and the corresponding power spectrum density E (v). Thus,

00 00 00 . , 00 ,
/ F()F(t + 1) dt :/ dv/ dv’F(v)f(v/)e*ﬂ””/ e 2T gy
o0 —00 —00

—0o0

(2.83)

With reference to Eq. 2.68 and by interchanging the roles of ¢ and v, we note

that the last integral in this expression becomes §(v + v’), which is different from

zero only if v = —v'. Consequently, the integration over v in Eq. 2.83 becomes

2 FONS(w +v)dv = F(—v) = F*(v). Then, if we divide by A, the left side

becomes the correlation function, and with Es(v) = F(v) F*(v)/A = |[F(v)|2/A, we
arrive at the important result

Correlation function <> spectrum density
V(D) = [2 Ea(v)e®™ dv (2.84)
Es(v) = [0 W(1)e ™7 dt

[EQ) = |[FW)2/A. W(r) = (F(t)F(t — 1)) (correlation function). (..): Time
averagel].

In other words, the auto-correlation function and the two-sided power spectrum
density form a Fourier Transform pair. The corresponding relations for the one-sided
power spectrum density are

Wiener-Kintchine relations
V() = [;° Ex(v(cos@mvT)dv |, (2.85)
E\(v) =4 [~ W(r) cos@mvT)dT

where E1(v) = 2E5(v). These equations are known as the Wiener-Khintchine rela-
tions.

2.6.5 Random Excitation of the Linear Oscillator

As an example, we consider a linear oscillator driven by a random force F(¢) and wish
to determine the correlation function for the displacement &(t).

If the Fourier amplitude of the driving force is F(v), where @ = 2mv, the
corresponding Fourier amplitude of the displacement is (see Eq. 2.34) &£(w) =
F(w)/(K — 0*M — iwR) with the two-sided power Fourier spectrum density

|F(v)[? B O
(K —®M)? 4+ (0R)?  M2[(0} — 02 + 4y20?]

EW)? = (2.86)
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where w = 27 v, a)g =K/M and y = R/2M.

If the power spectrum density E(w) = |[FW)? /A of the force is constant, Ej,
the correlation function, according to Eq. 2.85, is W(t) = (E()3(1); it is zero for all
values of T except zero.?

The power spectrum density is given by Eq. 2.86 and if this is used in Eq. 2.84 the
correlation function for the displacement of the oscillator is found to be

E
W, T = 0 e V" cos wjT + L/ sin(w) 1)1, (2.87)

4M2wly wy

where o), = /w3 — y2 and y = R/2M (compare the analysis of the free damped
motion of an oscillator). Again, we leave the integration involved as a problem.

The physical significance of this result is that although the driving force is com-
pletely random, the response of the oscillator is not, exhibiting substantial correlation
over a range of T of the order of 1/y. The reason for this correlation is that the
oscillator in effect acts like a filter which tends to limit the spectrum density to a band
centered at the frequency w; and with a width proportional to y.

The mean square value of the displacement is the value of the correlation function
att =0,

(8% = 20 = leowPy. (2.88)

4M Qa)%
where we have used Eq. 2.86. In other words, the mean square displacement is
obtained from the value of the spectrum density of the displacement at resonance
multiplied by an effective bandwidth y. (It should be borne in mind that if the
spectrum density is expressed in terms of @ rather than v, we have, from E(w)dw =
E()dv, E(v) =2 E(w).)

In this particular case with a completely random driving force, the correlation of
the displacement depends only on the characteristics of the oscillator. If the force
spectrum is itself limited to a finite band, the correlation function of the displacement
will contain this characteristic as well.

2.6.6 Impulse and Frequency Response Functions;
Generalization and Summary

In Section 2.5, the displacement of a harmonic oscillator caused by an impulse was
calculated from elementary considerations as an initial value problem. This impulse
response function was then used to determine the motion caused by a driving force
of arbitrary time dependence. We now consider the response of a linear system in
general, not limited to the mass-spring oscillator.

With a complex force amplitude F(v) applied to a mechanical system with an
input impedance Z(v), the complex amplitude of the velocity is, by definition of the

9In practice, the spectrum is limited to some finite frequency range. For example, if the power spectrum
density of F(r) has the constant value E below the frequency vy, and zero beyond, it is left for the reader
to show, from Eq. 2.84, that the correlation function is W(r) = Eo(1/w)mt)) sin(wy, ). In that case, there
will be a substantial correlation for values of T < 1/w,, where wy, = 2w vy,.
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impedance Z(v),
uw) = F0)/Z(v) = FY (), (2.89)

where Y = 1/Z is the admittance. Actually, for any dynamic variable related to the
system there is a corresponding linear relation between the driving force and the
response. For example, the complex displacement amplitude &(v) = u(v)/(—iw) =
FW)/[(miw)Z(v)].

With a terminology borrowed from electrical circuit analysis, if one complex am-
plitude x(v) is considered to be the input and another, y(v), the output, the linear
relation between the two is written

y() = Hw)x(v), (2.90)

where H (v) is the frequency response function for the particular quantity involved.
If x is the driving force and y(v) the velocity amplitude, H is simply the input ad-
mittance ¥ = Z~1. If y is the displacement the frequency response function is
H = [(—iw)Z]~! which, unlike the admittance, has not been given a generally ac-
cepted special name.

When the input and output of the system are converted into electrical signals by
means of appropriate transducers, the frequency response function H(v) can be
determined and displayed by feeding these signals to a two-channel digital frequency
analyzer (Fast Fourier Transform, FFT, analyzer).

If the input is a unit impulse at ¢ = 0, §(7), so that the Fourier amplitude x(v) is
unity, H is called the impulse (frequency) response function. The corresponding time
dependence is obtained from the Fourier transform equation

h(t):/ H(v) exp(—i2mv) dv. (2.91)

With the impulse delivered at ¢t = ¢’ rather than at r = 0, the Fourier amplitude
is exp(iwt’) (see Eq. 2.68) rather than unity. Combined with the factor exp(—iwt) in
the Fourier integral leads to exp[—iw(r —')] so that & (¢) will be replaced by h(r —1').
The response to an arbitrary input signal can then be calculated as shown in Eq. 2.53.

It is instructive to evaluate the integral in Eq. 2.91 for the special case of the
harmonic oscillator, i.e., H = Y = 1/Z, to make sure that the result agrees with
Eq. 2.52 obtained earlier by an entirely different method.

With Z = R — ioM + iK /o, we have —iwZ = —M(0® — @} + iR/M) =
—M(w — w1)(w — w2) where w] = —iy + wjand we = —iy —wo’, y = R/2M and

w) = Jw} — y2. Eq. 2.91 can then be written

h) = ——+ foo exp(—i2ny) (2.92)
27)°M J_oo (v —v1) (v — v2)

where v = w/2m. This integral is evaluated by means of the residue theorem.
The poles of the integrand are at v; and ve and the residues at these poles are
exp(—iwz)t/[(v2 — v1)] and exp(—iw1)t/(v1 — v2). The path of integration runs
along the real axes and is closed by a semi-circle in the lower half of the complex plane



52 ACOUSTICS

(in this half, the integral along the circular path is zero). The path of integration runs
in the clock-wise (negative) direction which is accounted for by a minus sign. The inte-
gralis 27 times the sum of the residues. Then, with exp(io) —exp(—ia) = 2i sin(a),
we get

h(t) = (1/wyg) exp(—yt) sin(wyt), (2.93)

where o/, = 27v) = /w} — y2. If the impulse is delivered at ¢ = ¢’ rather than at
t = 0, we have to replace t by r —t’, as indicated above, in which case the result is
identical with Eq. 2.52.

In this particular example, the derivation of the impulse response function in
Eq. 2.52 was simpler than that given here. However, the present analysis is general
and can be applied to any linear system for which the frequency response function is
known.

2.6.7 Cross Correlation, Cross Spectrum Density,
and Coherence Function

The quantities referred to in the heading are relations between the input and output
signals which can be determined with a two-channel FFT analyzer. With the input
and output signals denoted x (¢) and y(r), the cross-correlation function is

Yy (1) = (x(O)y( + 1)) (2.94)

and, together with the corresponding two-sided cross spectrum density Sy, (v) form
the Fourier Transform pair

Cross correlation<>Cross spectrum density
Sey(v) = [0 Wiy exp(—i2nvT)dT ) (2.95)
Wy (1) = [0 Sy (v) exp(i27vT) dv

The derivation is completely analogous to that for the transform pair in Eq. 2.84 for
the auto-correlation function and the corresponding two-sided spectrum density. In
terms of the present notation, the auto-correlation function for the input signal x (¢)
is Wyx (1), and the corresponding two-sided cross spectrum density is §,,. Analogous
expressions apply to the output signal y(r). The ratio of the Fourier amplitudes y(v)
and x(v) of the output and input signals y(z) and x(¢) is H(v) (see Eq. 2.90) and
since the spectrum density is proportional to the squared magnitude of the Fourier
amplitudes, it follows from Eq. 2.90 that

Syy(V) = [HW) 255y (v). (2.96)

The cross spectrum density is also intimately related to the frequency response
function H (v), and, as shown below, we have

§xy(V) = H(V)5xx(v), (2.97)

where §, is the two-sided spectrum density of the input function. This relation can be
proved as follows. In terms of the impulse response function 4 (r —t’) and the Fourier
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transform of H (v), it follows from Eq. 2.53 that y(r + 1) = [ h(t)x(t + 7 — ') dt’
and hence,

o
W,y = (x(Oy( + 1)) = / Rt (x(Ox(t +1 — 1)) dt. (2.98)
—oQ

Next, we introduce the Fourier integrals for Wy, (t) and Wy, = (1—1") = (x(1)x(1+
7 — 1)) in terms of the density functions 5y, and ;.. The integral over ¢’ then yields
H (v) and by comparing the two sides of the equation, we obtain Eq. 2.97.

The relation between y(r) and x(7) and between sy, and sy, are causal as they
involve the output produced by an input. In experiments there are sometimes distur-
bances that interfere with this relation as the output signal might contain extraneous
signals not accounted for in the analysis. A useful diagnostic test for such interferences
is the the coherence function y which is defined by

Y2 = 1By )P/ [Sax (0)8yy (V)] (2.99)

It follows from §y, = |H(v)|?5yx (v) and Eq. 2.97 that under normal conditions,
the coherence function is unity. If measurements indicate a deviation from unity, the
reason can be: (a) that in addition to the input signal, extraneous signals contribute
to the output, (b) that the system is nonlinear, and (c) that the system parameters are
time dependent.

2.6.8 Spectrum Analysis

A mechanical vibration (including sound) can be converted into an electrical signal
by means of a transducer. There are many kinds of transducers based on a variety of
physical phenomena such as the induced voltage caused by the motion of a conductor
in a magnetic field, the electric effects resulting from the deformation of a piezo-
electric or magneto-strictive materials, the variation of the capacity of a condenser
resulting from a variation of the separation of the capacitor plates, the velocity depen-
dent cooling and change in electrical resistance of a thin wire, the Doppler effect of
light reflected from a vibrating surface, the change in electrical resistance of packed
carbon powder or foams, etc. These transducers can be made in such a way that
the output current (voltage etc.,) is proportional to sound pressure, displacement,
velocity, or acceleration.

The current can be decomposed by means of filters in much the same way as a
signal can be decomposed into a sum of harmonic functions, as described in Section
2.6. A frequency analysis can be made not only of a periodic signal but of a signal with
a more general time dependence such as a random function and even a pulse. The
filters can be analog or digital devices; the latter are now more common. The FFT
analyzer (Fast Fourier Transform) yields an almost instantaneous presentation of the
spectrum of a signal and can process a signal in many different ways resulting in the
rms value, the spectrum, and the correlation function, for example. A two-channel
FFT analyzer can produce other useful outputs discussed above such as the frequency
response function, the cross correlation function, and the coherence function.

An analyzer filters a signal into frequency bands and gives as an output the rms
values in these bands which constitutes the frequency spectrum of the signal. Often
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the bandwidth of the analyzer can be selected. Either the bandwidth Av itself or
the relative bandwidth Av/v can be chosen to be constant over the frequency range
under consideration. Normally, analyzers in engineering acoustics cover a range from
16 to 10,000 Hz (compare the range of frequencies on the normal keyboard of a piano,
discussed in Chapter 1). The relative bandwidths are generally 1/3 and 1/1 octaves,
the first octave being centered at 31.5 Hz. Occasionally, the 1/12 octave is used,
corresponding to a semitone on the equally tempered musical scale.

By dividing a narrow band spectrum by the bandwidth Av, an analyzer can also
provide the spectrum density E(v), which is the contribution to the rms value per
Hz. Formally, it is defined by the relation

o0
(F2(1)) = F?> = / E(v)dv, (2.100)
0
where (F2(t)) is the mean square value, F the rms value, and v the frequency.

Band Spectra; 1/1 OB and 1/3 OB

With the lower and upper frequencies of the band being vy and vo, the meter reading
for this band will be determined by the rms value Fj, given by

1)
Ff:/ W) dv, (2.101)
V1

which is the mean square contribution from this band. If vo = 2v1, the bandwidth is
one octave, and if vy = 213y | it is one-third of an octave.

On a logarithmic scale, the center frequency vi2 of a band is such that vo/v12 =
vig/v1 (ie., vig = /vive, vi = via/va/v1 and vo = vi23/va/v1). Thus, the
bandwidth (in Hz) of an octave band with the center frequency v12 can be writ-
ten vo — v = via(/va/v1 — /V1/v2) & 0.707 v12 (i.e., close to 71 percent of the
center frequency).

For a one-third octave band, vo/v; = 2173 and vy — v = v12(21/6 — 271/6) ~
0.23v12. In general, for a bandwidth of 1/nth octave the result is

vy — vy = v (212" — 271/, (2.102)

In acoustical engineering practice, the center frequencies of the octave bands have
been standardized to the values 16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, and
8000 Hz and the third octave band center frequencies are 12.5, 16, 20, 25, 31.5, 40,
50, 63, 80, 100, 125, 160, 200, 250, 315, etc.

Frequently, a reference rms value F; of the quantity involved is used. With refer-
ence to it, the level in decibels of the quantity F 2 s expressed as

dB = 10 log(F?/F?), (2.103)

where F2 is given by Eq. 2.100.
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2.6.9 Problems

1. Fourier series. Particle in a box
Consider the motion of a particle in a box bouncing back and forth between two parallel
rigid walls (normal incidence). The speed of the particle is U and the width of the box
is 2L. The collisions with the walls are elastic so the speed of the ball is the same before
and after the collision.
(a) Make a Fourier decomposition of the displacement of the particle. First, letr = 0
be at the maximum excursion of the particle so that the function will be symmetric with
respect to . Then, repeat the analysis with r = 0 at the time of zero excursion. Use
your favorite software and make plots of the sum of 5, 10, and 20 terms of the Fourier
series.
(b) Do the same for the velocity function of the particle.

2. Fourier expansion of a rectified harmonic function
Determine the Fourier series of the function &(#) = | cos(wt)].

3. Fourier series, use of complex variables
With reference to the example in Section 2.6, carry out part (b) of the example using
complex amplitudes (two sided expansion) by analogy with the expansion in (a).

4. Correlation function
(a) Show that the correlation function of a harmonic function is also harmonic.
(b) What is the auto-correlation function of exp(—y1) cos(wt)?

5. Spectrum shape
Consider a sound pressure field in which the spectrum density of the sound pressure
p is constant, E(f) = Ep. Make a sketch of the frequency dependence of the octave
band spectrum of the pressure in which the sound pressure level is plotted versus the
logarithm of the center frequency.

6. Oscillator driven by a random force

Check the results in Egs. 2.87 and 2.88 for the correlation function and the mean square
displacement of an oscillator driven by a random force.

2.7 The Potential Well and Nonlinear Oscillators

As we have seen, the linear oscillator is characterized by a restoring force proportional
to the displacement. It was pointed out, however, that this linearity can be expected
to hold only for small displacements from the equilibrium position. The deviation
from linearity was illustrated qualitatively for both the coil spring and the air spring.
A quantitative study of a nonlinear oscillator requires the solution of nonlinear dif-
ferential equation which in most cases has to be done numerically, as illustrated in an
example at the end of the chapter.

Some aspects of a nonlinear oscillator can be understood from the motion of a
particle in a potential well, in which the potential energy of the particle is a known
function of the displacement. (The mass-spring oscillator is a special case with the
potential energy being proportional to the square of the displacement.)

We denote the potential energy of the particle by V (§), where & is the displacement
in the x-direction from the stable equilibrium position at the bottom of the well
(¢ = 0) where the potential energy is set equal to zero. As indicated in Fig. 2.8, the
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£,

Figure 2.8: Motion of a particle in a one-dimensional potential well. Total energy of the
particle is E. The turning points in the oscillatory motion are & and &.

total energy of the particle is E. The kinetic energy is zero where E = V (£); this
determines the turning points &1 and & of the oscillator.

The force on the particle in the x-direction is —9V /3§ = —V'(§). At the equi-
librium position, this force is zero. Furthermore, since we are at a minimum of the
potential energy, V/(0) = 0 and V" (0) is positive. The Taylor expansion of V () then
becomes

VE) =VO)+EVO0)+ E2/2 V0 +...=E2/2)V"0) + - (2.104)

and the force on the particle is F = —V"(0)é — ... (i.e., proportional to & for small
£); the equivalent spring constant is K = V" (0). For the linear spring, the potential
energy is V = K&2/2 and V”(0) = K, as it should be. Thus, the equation of motion
for small oscillations is

Mé = —V"(0)&

and the solution is a harmonic motion with
wg=K/M=V"0)/M (2.105)

and the corresponding period is Ty = 27 /wy.

Sometimes it may not be convenient to place & = 0 at the equilibrium position;
it could equally well have been chosen to be &, so that the displacement from equi-
librium is & — &;. In the Taylor expansion of the potential in Eq. 2.104, & is then
replaced by § — &; and ‘0" in the argument of the derivatives of V by &;.

Example

Consider a nonlinear spring held fixed at its upper end. The force required to change
the length by an amount & from its relaxed position is F(§) (rather than K& for a
linear spring). A body of mass M is hung from the lower end of the spring. Calculate
the frequency of oscillation of the body in small oscillations about the equilibrium
position. In particular, let F(x) = b 3.

The static displacement &, of the spring is determined by the equation F (&) =
Mg. With F(§) = b&3, the static displacement becomes &, = (Mg/b)1/3. The
potential energy function is V. = [ F(§)d§ = (b/4)&* + const and, according to
Eq. 2.105, the local spring constant in a small displacement from equilibrium is
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V" (&) = SbE(% = 3Mg/&,, where we have used Mg = b&3. Thus, the angular
frequency of oscillation about the equilibrium position is

wo = V") /M = /38 /&g (2.106)
This should be compared with the result for the linear spring which is /g /&:.

2.71 Period of Oscillation, Large Amplitudes

The period of oscillation for an arbitrary amplitude of motion of a nonlinear oscillator
can be expressed in the following manner. Conservation of energy requires that
ME2/2+V (&) = constant = E, where E is the total mechanical energy of oscillation.
Thus,

E =dE/dr =\/(2/M)(E — V(§)). (2.107)

At the turning points & and & of the oscillation, the kinetic energy is zero and
these points are obtained as solutions to V(&) = E. The period of oscillation is twice
the time required to go between the turning points &1 and &, i.e.,

& dg
T = 2/ . (2.108)
5 VE/M)(E-V(E)

For the square law potential, the period is independent of the energy and the
spring constant independent of the amplitude. For an oscillator, such as a pendulum,
the equivalent spring constant decreases with increasing amplitude and the period
increases with amplitude. Such an oscillator is sometimes referred to as ‘soft.” For an
air spring, on the other hand, the spring constant increases with amplitude and the
oscillator is ‘hard.”

2.7.2 Pendulum

The pendulum, as in a clock, consists of rigid body of mass M, which can swing freely
in a plane about a fixed axis of rotation. If the center of mass is a distance L from the
axis and the angle of deflection from the vertical is ¢, the height of the weight above
the equilibrium position ¢ = 0 is L(1 — cos ¢) so that the potential energy of the
pendulum is

V($) = MgL(1 — cos ¢). (2.109)

If the maximum angle of deflection is ¢y, the total energy can be expressed as
E = MgL(1 — cos¢p). With the moment of inertia of the pendulum being I =
M R2, where R is the radius of gyration, the kinetic energy is K = (1/2) (do/dt)® =
E — V(¢) and solving for 3¢ /3¢ and integrating from ¢ = 0 to ¢ and from r = 0 to

t =t yields
R2
— JR2/2¢L / (COS¢_COS¢0 (2.110)

For the ‘simple’ pendulum we have R = L. With the maximum angle ¢ as the
upper limit of integration, t = T/2, where T is the period of oscillation.
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For small displacements, we can use cos¢ ~ 1 — ¢?/2, and with /g/L denoted
wy, it follows that

t d¢
wot :/ —d
0 (@3 — 9D

In other words, for small amplitudes the pendulum moves like a linear oscillator

with the resonance frequency
wy = \/g/_L (2.112)

independent of the amplitude. The period increases with amplitude which means
that the equivalent spring constant is ‘soft.’

= arcsin(¢/¢g) or ¢ = g sin(wot). (2.111)

2.7.3 Oscillator with ‘Static’ and ‘Dynamic’ Contact Friction

In the analysis of the motion of a damped mechanical oscillator, the simplest example
being the mass-spring variety, it is usually assumed, as we have done earlier, that the
damping force is viscous (i.e., proportional to the velocity). This is not always realistic;
a typical example is a block sliding on a table and attached to a spring, often used in
elementary texts with the tacit assumption of viscous friction.

Actually, the elementary view of the velocity dependence of the contact friction
force and the corresponding friction coefficient is simply that one distinguishes be-
tween a ‘static’ and a ‘dynamic’ coefficient. The former refers to the state in which
the body is on the verge of moving under the influence of a horizontal driving force.'?
The latter applies when the body is in motion and the magnitude of the friction force
is then usually assumed to be independent of velocity.

There is a fundamental difference between ‘dry” and viscous friction. In the case
of the dry friction, the driving force must exceed the constant friction force if any
motion at all is to occur. By contrast, a viscous friction force allows motion for any
magnitude of the driving force. This illustrates in a simple manner the nonlinearity
of the oscillator with dry friction.

We shall consider here the impulse excitation of an oscillator in which the damping
is due to a combination of a viscous friction force —Ru, proportional to the velocity
u = &, and a dry contact friction force of magnitude |Fy|. If the mass M of the
oscillator is sliding on a horizontal plane, the elementary view of the friction force
makes it proportional to the normal contact force, and if only gravity is the cause
of it, we have |F;| = uMg, where u is the friction coefficient. To include also the
direction of the this friction force, we use the expression Fy = —|Fy|sgn(u), where
the sign function sgn(u), by definition, is +1 if u is positive and —1, if u is negative; it
can be expressed formally as

sgn(u) = u/lu| = £/|£|. (2.113)

10 Actually, when the block is at rest, the friction force increases with the applied horizontal force until it
reaches a maximum value Fj, which defines the static friction coefficient as the ratio of Fy,; and the normal
contact force.
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With the displacement from equilibrium denoted §, as before, the equation of free
damped motion of the oscillator is the same as Eq. 2.23 except for the addition of the
contact friction force Fj.

E+2y& +|Fylsgn(é) + ojt =0, (2.114)

where a)o K/M and y = R/2M.

With only the conventional viscous friction the oscillator when started from & = 0
att = 0 with avelocity u(0), corresponding to an applied impulse of Mu(0), the time
dependence of the velocity u = £ in the subsequent motion follows directly from
the impulse response function Eq. 2.52 by differentiating with respect to time and
multiplying by the impulse Muy, since the impulse function refers to a unit impulse.
Thus,

u(t)/u(0) = exp(—y1)[cos(wt) — (y/w1) sin(w11)], (2.115)

where y = R/2M and 0} = w§ — y2. The period of free undamped oscillations is
To = 27 /wp. This normalized velocity function will be independent of the magnitude
of the initial velocity and the corresponding impulse.

This is not the case when the constant friction force is present, however, since the
oscillator is no longer linear. The equation of motion (2.114) now has to be solved
numerically and it is convenient in such a computation to use a normalized version of
the equation. Thus, if we introduce the normalized time t’ = ¢/ Tp and the normalized
displacement §" = & /u(0) Ty, the equation takes the form (see Problem 6)

2
22 + 2y To og + Bsgn (i)+(2n) £'=0, (2.116)

where g = F;Tyo/Mu(0). The quantity 9&’/81" now becomes the normalized velocity
u/u(0) with the value 1 at ¢’ = 0. The quantity g = (FgTo/Mu(0)) is the magnitude
of the nonlinear term in the equation; it is the ratio of the impulse F,; Ty of the friction
force during one period and the external impulse Mu(0) delivered to the oscillator at
t'=0. Ttisa nonlinearity parameter which goes to zero as F; goes to zero or Mu(0)
goes to infinity.

The equation (2.116) is solved numerically and we have used a slightly modi-
fied Runge-Kutta fourth order approximation.“ The accuracy of this procedure
is checked by comparing the result obtained for 8 = 0 with the known exact solution,
Eq. 5.19, for the linear oscillator. The results obtained are illustrated by the examples
in Fig. 2.9 where the normalized velocity u(¢)/u(0) is plotted as a function of the
normalized time 1 = ¢/Tj in the range 1" = 0 to 10; the linear decay constant is
such that y Ty = 0.05 and values of the nonlinearity parameter g8 = F4Ty/Mu(0) are
0.025, 0.1, 0.2, and 1.0.

With y Ty = 0.05, it will take about 20 periods for the linear oscillator amplitude
to decay by a factor of exp(—1) ~ 0.37. For comparison, this linear decay curve (thin
line) is shown in each case; then, since Fz = 0, it corresponds to a value 8 = 0 of the
nonlinearity parameter.

1See standard mathematical texts on differential equations.
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Figure 2.9: Decay of impulse excited oscillator containing both viscous and speed indepen-
dent contact friction damping; normalized velocity u(¢)/u(0) versus normalized time, ¢/ Ty.
Thin lines: Linear oscillator with only viscous damping. Thick lines: Both viscous and speed
independent contact friction force Fy present. ‘Nonlinearity’ parameter: 8 = FzTo/Mu(0).
To: Period of undamped oscillations. M: Oscillator mass. u(0): Initial velocity.
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The actual decay curves for different degrees of nonlinearity, i.e., different values
of B, are shown by the thick lines in the figure. For g = 0.025, the decay is almost
indistinguishable from the linear decay during the first ten periods. With g = 0.1,
there is only a slight difference during the first two periods; the difference increases
as the amplitude decreases, however, since the role of the contact friction increases
as the momentum of the oscillator decreases. Actually, with 8 = 0.2, the oscillator
comes to a stop between the sixth and seventh periods, and with 8 = 1, only a couple
of periods survive.

2.7.4 Problems

1. Transverse oscillations of mass on a spring

Reexamine the example in Chapter 11 when the spring has an initial tension S and the
amplitude of oscillation is not necessarily small. Derive an expression for the period of
oscillation in terms of the amplitude of oscillation.

2. Oscillations of a floating body

A weight is hung from the vertex of a wooden cone which floats on water. In equilibrium,
the cone is submerged a distance y in the water, measured from the vertex. What is the
frequency of small vertical oscillations about the equilibrium? What can you say about
the frequency of large amplitude oscillations? Density of the cone: 0.5 g/em>.

3. Morse potential
The Morse potential (describing the interaction potential in a diatomic molecule) is
V(&) = Blexp(—2b&) —2exp(—b&)], where £ is the displacement from the equilibrium
position. A particle of mass m moves under the influence of this potential.
(a) What is the potential energy in the equilibrium position?
(b) Show that the angular frequency of small oscillations about the equilibrium is given
by w% =2b°B/m.

4. Potential well
Consider a particle of mass M oscillating in a well of the one-dimensional periodic
potential V(&) = 1 — cos(k€), where k = 277/A and A is the wavelength. Show that the
angular frequency of small oscillation is given by a)g = Vok2/M.

5. Piston on an air spring
Obtain the differential equation for the displacement & of the piston of mass M riding
on the air column in a vertical tube of length L in the case when the displacement from
the static equilibrium position of the piston cannot be regarded as small. Show that in
the limit of small displacements, the equation reduces to the linear oscillator equation
and what is the spring constant?
Will the period of oscillation increase or decrease with the amplitude?
Optional. Explore numerical methods of solving the nonlinear equation of motion.

6. Oscillator with combined ‘static’ and ‘dynamic’ friction

Check Eq. 2.116 for the normalized displacement of the nonlinear oscillator with com-
bined dry and viscous friction.






Chapter 3

Sound Waves

Unlike electromagnertic waves, elastic waves require a gas, liquid, or solid for trans-
mission. Both longitudinal and travsevers waves are involved as will be discussed in
this chapter.

Classical mechanics is often divided into two major parts, Kinematics and
Dynamics. We follow the same major outline in this chapter and start with wave
kinematics, examples, and description of waves.

In dynamics, forces enter into the discussion and the elastic properties of the
material substance (gas, liquid, solid) that carries the wave need to be discussed. The
underlying physics involved are the conservation laws of mass and momentum to
which is added the equation of state for the material (the latter contains information,
which, in a sense, is analogous to the spring constant in a mass-spring oscillator).

The interaction of waves with boundaries leads to the phenomena of reflection,
absorption, transmission, diffraction, and scattering, which will be treated in separate
sections.

3.1 Kinematics

3.1.1 Traveling Waves

As afamiliar example consider the ‘waves’ frequently observed amongst the spectators
of a football game in the packed stands. The wave can be generated, for example, by
repeating the motion of the spectator to the left, lifting an arm, for example. There
is some time delay involved in this repeated motion. As a result, a wave traveling
to the right is generated. The speed of the wave depends on the reaction time of
the individuals and inertia. For the motion suggested, the wave will be transverse. It
should be noted that the wave does not carry any mass in the direction of propagation.
The shape of the wave depends on the motion that is being repeated.

Similarly, when the end (at x = 0) of a stretched rope is suddenly moved sideways,
the event of ‘moving sideways’ travels along the rope (in the x-direction) as a wave
with a certain speed v which is known from experiments to depend on the tension in
the rope and its mass. The initial displacement will be repeated by the element at x
after a travel time x/v. Again, there is no net mass transported by the wave in the
direction of wave travel and the wave speed.

63
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In a compressional wave in a fluid or solid, it is the state of being compressed
that travels and on an electric transmission line, it is the electromagnetic field which
is transmitted with a certain wave speed; it has little to do with the velocity of the
electrons which carry the current in the line.

If, in any such example, the time dependence of the displacement at location x = 0
is harmonic, £(0, t) = A cos(wt), it will be

E(x,t) = Acos[w(t — x/v)] = Acos[2n(¢t/T — x/\)] (3.1)

at location x. We have here introduced the period T = 27 /w and the wavelength
A = vT, which is the distance traveled by the wave in one period. It is the spatial
period of the displacement as obtained in the snapshot referred to in the previous
paragraph.

Thus, a traveling harmonic wave can be thought of as a distribution of harmonic
oscillators along the x-axis, all with the same amplitude but with a phase lag (phase
angle) proportional to x.

In regard to the x-dependence of the wave function, the wavelength A stands in
the same relation to x as the period T does to ¢. The angular frequency w = 27/T
has its equivalence in k = 27 /A = w/v, where v = A/T is the wave speed. Quantity
k is generally called the propagation constant. In terms of these quantities, the wave
in Eq. 3.1 can be written A cos(wt — kx) or A cos(kx — wt).

The frequency f = 1/ T, the number of periods T per second, has its analog in the
quantity 1/A, the number of wavelengths per unit length; it is often called the wave
number.

If instead of having the time dependence A cos(wt) at x = 0 we have the more
general harmonic function A cos(wt — ¢), the corresponding wave function will be
E(x,1) = Acos(wt — kx — ¢), where ¢ is the phase angle or phase lag.

The fact that the wave is traveling in the positive x-direction is expressed by the
time delay x/v. If, instead, a wave is traveling from the origin in the negative x-
direction, the time delay, being a positive quantity, must be expressed as —x /v. Thus,
to summarize, harmonic one-dimensional waves are of the form

E(x,1) = Acos(wt £ kx — ¢), (3.2)

where the minus and plus signs refer to wave travel in the positive and negative x-
directions, respectively. The wave can be thought of as a continuous distribution of
harmonic oscillators along the x-axis, all with the same amplitude but with a phase
difference which is proportional to the distance between the oscillators.

The time dependence of the generator of the wave at x = 0 need not be harmonic
but can be an arbitrary function f(¢). For a wave traveling in the positive x direction,
this function is repeated at location x after a time delay x /v, and the wave function
then becomes

f(x,t) = f(0,t £ x/v). (3.3)

As before, the minus and plus signs correspond to wave travel in the positive and
negative x-directions, respectively.
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3.1.2 The Complex Wave Amplitude

We have already introduced and used the complex amplitude of a harmonic motion
in Section 2.1.1. We refer to it and and also to Appendix B for the use of Euler’s
identity exp(ia) = cos(a) + i sin(e) to express a harmonic function in terms of an
exponential and how to use the resulting complex amplitude in problem solving.

With reference to Section 2.1.1, a displacement wave traveling in the positive x-
direction, &(x, ) = A cos(wt — kx), at a given x is nothing but a harmonic oscillator
with the phase angle ¢ = kx and the complex wave amplitude is

E(w) = Aet, (3.4)

where k = /v, v being the wave speed. Similarly, a harmonic wave traveling
in the negative x-direction has the complex amplitude A exp(—ikx). If we let A
be a complex number, A = |A|exp(i¢), the corresponding real wave function is
E(x,t) = |A| cos(wt — kx — ).

The frequency w and the corresponding time factor exp(—iwt) are implied and are
not included in the definition of the complex wave amplitude. All we need to know
about the motion is contained in the complex amplitude (i.e., the magnitude |£| and
the phase angle (lag) kx). In regard to notation, we use, as in Chapter 2, £(x, t) for
the space-time dependence of the real pressure and §(x, w) for the corresponding
complex pressure amplitude. Admittedly, in the course of describing an equation of
motion, this kind of careful use of terms often tends to be cumbersome and is often
ignored, both &(x, #) and & (x, w) being referred to simply as &, and if this is the case,
the context will decide which of the quantities is involved. If there is any risk of
confusion, we use the full arguments.

3.1.3 Standing Wave

The sum of two waves of the same amplitude but traveling in opposite directions is
expected to have no preferred direction of wave travel. This can be seen numerically
by a brute force addition of the displacements at different times or, more simply,
algebraically, with the use of the trigonometric identity cos(a 4+ b) = cos(a) cos)b) —
sin(a) sin(b). Thus, if the waves in the positive and negative x-direction are £, =
A cos(wt — kx) and £ = A cos(wt + kx), their sum will be

E(x,1) =& + & =2Acos(kx) cos(wt) (standing wave). (3.5)

There is no direction of propagation and it is called a standing wave. Like the
traveling wave, it can be thought of as a continuous distribution of harmonic oscillators,
but unlike the traveling wave, the amplitude is not constant but varies with x as
expressed by 2A cos(kx). In this case, the amplitude will be zero forkx = 2n—1)7/2,
where n is an integer, and the distance between the zero points or displacement
nodes will be 7w /k = A /2. The maxima of the displacement, the antinodes, have the
magnitude 24 and occur where kx = nw,ie., atx =0,x = 1/2 etc.

The oscillations in a standing wave are either in phase or 180 degrees out of phase.
Between two adjacent nodes, the phase is the same and a phase change of 7 occurs
when a node is crossed; this means a change in sign (direction) of the displacement.
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If the amplitudes of the traveling waves in the positive and negative directions
are different, Ay cos(wt — kx) and A_ cos(wt + kx), we can always express Ay as
[A— 4+ (A4 — A_)] in which case the sum of the two traveling waves can be written
as the sum of a standing wave and a traveling wave (in the positive x-direction) with
the amplitude A} — A_.

From Section 3.1.2 follows that the complex amplitudes of the two waves involved
in the creation of a standing wave are A exp(ikx) and A exp(—ikx), and the complex
amplitude of the sum

E(x, w) = A + e ) = 24 cos(kx). (3.6)

The result follows directly from the Euler identity; the imaginary parts of the
exponentials in the sum cancel each other, leaving only the two identical real parts.

If we wish to return to the real displacement, &(x, r) we re-attach the time factor
exp(—iwt) and take the real part, i.e.,

E(x, 1) = R{E(x, w)e '} = 2A cos(kx) cos(wt). (3.7)

No further comments are needed in regard to the x-dependence of the displace-
ment amplitude in Eq. 3.6, but how about the phase angle? It is contained in the sign
of cos(kx); if it is positive, i.e., with kx between 0 and 7 /2, the phase angle is O (or an
integral number of 277) and if it is negative, with kx between 7/2 and 7, the phase an-
gle is 7, i.e., 180 degrees out of phase. (Remember, exp(0) = 1 and exp(in) = —1.)
Thus, crossing a displacement node in the standing wave, for example at kx = 7/2,
changes the phase by an amount equal to 7.

3.1.4 The Wave Equation

A wave traveling in the positive x-direction is of the form &(x, ) = £(0,¢ — x/v),
as indicated in Eq. 3.3. Since the time and space dependence is expressed by the
combination t — x /v for a wave traveling in the positive x-direction, it follows that
there is an intimate relation between the time dependence and space dependence,
9€/0x = —(1/v)d&/dt. For a wave in the negative x-direction, the corresponding
relation is 9§ /dx = (1/v)3&/9t. They are both contained in the equation

3p/ax> = (1/v2)d’p/ar>, (3.8)

which is called the wave equation.
In the special case of harmonic time dependence, 32p/ot> = —w?p, and with
k = w/v, the harmonic wave equation takes the form

9%k 2
— t (@/v)°E =0. (3.9)
0x
Thus, if in the study of the dynamics of waves we should encounter an equation of
this type, we know that a harmonic wave, either in the positive or negative x-direction
or a combination of both, are possible solutions. To find the solution which applies to
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a particular problem, these possible solutions have to be combined in such a manner
as to satisfy boundary conditions, as will be discussed later.

The wave equation is valid if & stands for the complex amplitude &(x, ) of the
wave,

3.1.5 Wave Lines

The arrival of the pressure front (or any other part of the wave) at a certain location
is represented as a point in the (x, ) plane, and it is referred to as an ‘event.” The
event (0, 0) is thus the passage of the pressure through the origin x = 0 attime r = 0.
The collection of events (x, 1) define the wave line of the wave front. This line goes
through the origin and is given by r — x /c = 0 or t = x/c, where c is the wave speed,
a notation that is used in the rest of the book when sound waves in a gas are involved.

The events corresponding to the trailing edge of the pulse are represented by the
line t — x/c = 7, where 7 is the duration of the pulse. The lines are parallel and
have the slope 1/c but are separated by the time 7. Along these lines, or any other
parallel line, the argument of the wave function and hence the value of the function
remain constant. The lines can also properly be called wave trajectories. Frequently,
the ¢-axis is replaced by a cz-axis, in which case the slope of a wave line will be 1 for a
wave traveling in the positive x-direction and —1 for a wave in the opposite direction.

As aimple illustration of wave lines consider a sound wave incident on the boundary
between two regions with different sound speeds, for example air and helium. (The
boundary can be considered to be a very thin sound transparent membrane.) The
wave speed in helium is about 3 times larger than in air and the slope of the wave line
of the transmitted wave will be approximately 1/3 of the slope of the wave line of the
incident wave in air.

3.1.6 The Doppler Effect
Moving Source, Stationary Observer on Line of Motion

The source can be considered to emit wave pulses at regular intervals and waves are
emitted in both the positive and the negative x-direction. The slopes of the wave
lines are determined only by the wave speed ¢ in the surrounding air, and with the
speed u of the source smaller than the wave speed, the slope of each line is smaller
than the slope of the source trajectory.

From the wave lines, we get an idea of the time dependence of the wave trains
recorded by observers at rest ahead of and behind the source. It is clear that the
number of wave lines (wave pulses or periods) observed per second ahead of the
source, at x = x1, will be greater than behind it, at x = x2. In the case of harmonic
time dependence, the wave lines can be thought of as representing the crests of the
waves. In that case the number of lines per second will be the observed frequency of
the harmonic wave.

These frequencies can be obtained in several ways. Since the source moves with a
velocity u in the x-direction as it emits a harmonic wave, the separation of the wave
maxima ‘imprinted’ on the gas and constituting the emitted sound wave will not be the
ordinary wavelength. With reference to Fig. 3.1, consider one wave front emitted in
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Figure 3.1: Doppler effect. Moving source, stationary observer. Source velocity: u. Sound
speed: c. Wave fronts are shown as vertical lines.

the direction of motion atx = 0 and# = 0 and anotheratt = 7', one period later. The
first wave front will be at x = ¢T when the other wave front is emitted, thus located at
x = 0. The source has then reached the position ut. This means that the separation
of the imprinted wave fronts willbe A" = (¢ —u) T which is the wavelength of the wave
that travels with the wave speed c. It is shorter than the wavelength A = ¢/ T which
would have been obtained if the source had been at rest. For the sound traveling in
the opposite direction, the wavelength will be A’ = (¢ +u)T.

The wavefronts come closer together in the forward direction and further apart in
the opposite direction. The frequency of the emitted wave from the moving source,
as observed by a stationary observer ahead of the source, will be f1 = ¢/A" = ¢/[(c —
w)T] = f/(1 —m), where f is the frequency of the source and m = u/c, the Mach
number of the source. The corresponding observed frequency f> for an observer
behind the source is obtained by merely changing the sign of m. Consequently,

fi=f/Ad—m)
3.10
fo= £/ +m), (310
where m = u/c. These relations express the Doppler effect. The difference in

frequency f1 — f (or f — f2) is referred to as the Doppler shift. It is important to
understand that u is the speed of the source relative to the observer. If the absorber
is not located on the line of motion of the source, it is the velocity component of the
source in the direction of the observer which counts. Thus, when the sound emitted
at an angle ¢ with respect to the direction of motion of the source, the Doppler shift in
this direction is determined by the velocity component u cos ¢ so that m in Eq. 3.10
should be replaced by m cos¢. It is important to realize, however, that when the
sound arrives at the observer, the source has moved so that the emission angle is not
the same as the view angle under under which the source is seen at the time of arrival
of the Doppler shifted sound. This is explained further in the example given below.

The Doppler effect occurs for all waves. The frequency of the light from a source
moving away from us is down shifted (toward the red part of the spectrum) and the
shift is usually referred to as the ‘red-shift.’

Another way to obtain Eq. 3.10 is geometrical, using a wave diagram. This is done
in Example 20 in Chapter 11. The diagram used there looks a bit complicated because
of the many lines involved; perhaps you can simplify it.

Eq. 3.10 is valid when the source speed is smaller than the wave speed, i.e., when
m < 1. For supersonic motion of the source, m > 1, we get fi = f/(m — 1) and

Ja=f/m+1).
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The Doppler effect is important throughout physics. It is used in a wide range of
applications both technical and scientific for the measurement of the speed of moving
objects ranging from molecules to galaxies.

In the case of sound from a source like an aircraft, the speed of the source can exceed
the wave speed. The slope of the trajectory of the source will then be smaller than
the slope of the wave lines, and it follows that the wave lines emitted in the positive
and negative x-directions will emerge on the same side of the source trajectory and
cross each other; this indicates interference between forward and backward running
wave.

Observer on Side Line

The observer is now located at a distance & from the line of motion of the source.
At time ¢, the location of the source is at x; = ut. The wave reaching the observer
at this time was emitted at an earlier time 7, from the emission point x; = ut,. The
distance from this emission point to the observer can be expressed as R = c(t — 1, =
c(x — x¢)/u. With the coordinates of the observation point being x, y, R can be
calculated from R? = y2 4 (x —x¢)2. Withx —x, = x —x;+ (xs —x¢) = X —ut +uR /v
the equation for R can be written R? = y2 + [x — ut + u(R/v)]? with the solution

R =[m(x —ut) + R1/(1 —m?) (3.11)
Ry = [(x —ut)®* + (1 —m?)y*]'/2, '
where m = u/c is the Mach number of the source. The distance R must be positive,
and for subsonic motion only the plus sign corresponds to a physically acceptable
solution.

With the emission angle between the line of propagation from the emission to the
observation point denoted ¢, the component of the source velocity in this direction
will be u cos ¢. The Doppler shifted frequency depends only on this component and
is f/ = f/(1—m cos ¢). This Doppler shifted frequency can be expressed in terms of
the observer coordinates and time and we leave it for one of the problems to show that

f'=f/L=mcos¢p) = f(R/RY), (3.12)

where R and R; are given in Eq. 9.29.

For large negative values of the source location x;, the component of the source
velocity in the direction of the observation point is approximately u, and the corre-
sponding Doppler shifted frequency is the f/(1 —m). Similarly, after the source has
passed the observer, the frequency approaches the value f/(1 + m) asymptotically.
For example, with a source Mach number of 0.9 the corresponding range in Doppler
shifted frequencies goes from 10 f to 0.53 f.

Although the Doppler shift is zero when the emission angle is 90 degrees, there
is an upshift in frequency when the source is at x; = 0. The reason is that x;, = 0
corresponds to an emission point at an earlier time and the emission angle is less than
90 degrees. For a source with supersonic speed there are two emission points that
contribute to the sound pressure at time 7, as illustrated in Fig. 3.2. The corresponding
travel distances R” and R” correspond to the two solutions in Eq. 9.29 in which now
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Figure 3.2: For a supersonically moving source, there are two emission points contributing
to the sound pressure at the stationary observer O.

both the plus and minus signs are acceptable. There are corresponding emission
angles ¢ and ¢” and the Doppler shifted frequency for each can be calculated from
Eq. 3.12. It should be noted though, that f/(1 — m cos ¢) becomes negative. This
merely means that the wave fronts emitted from the source arrive in reverse order,
the front emitted last arrives first.

Stationary Source, Moving Observer

Consider two successive wave fronts emitted {rom the stationary source S separated
in time by T and in space by A. These wave fronts travel with the velocity c, the sound
speed. The observer O is moving with the velocity ug. The time it takes for these
front to pass the observer is then 7' = A /(¢ — uo) and the corresponding frequency,
f=1Tis

= f—mp), (3.13)

where my = ug/c is the Mach number of the observer.
It is instructive to consider the waveline interpretation of this case.

Both Source and Observer Moving

As before, denote by u and u( the velocities of the source and the observer along the
x-axis. The distance between two wave fronts emitted a time T apart will be (¢ —u)T,
where c is the sound speed. The two wave fronts travel with the speed ¢ — ug with
respect to the observer. The time required for the wave fronts to pass by will be
T" = (¢ —u)T/(c — up) and the corresponding observed frequency

f=f1—my)/(l—m), (3.14)

where, as before, m and m( are the Mach numbers of the source and receiver. For
small values of m and mo, we get f ~ f[1 + (m — mg)] which depends only on
the relative velocity of the source and the observer. For electromagnetic waves in
vacuum, the Doppler shift depends only on the relative speed under all conditions.
This is a consequence of the speed of light being the same in all frames of reference.
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Source, Observer, and Fluid, All Moving

Finally, we consider source and observer both moving in a moving fluid in arbitrary
directions. The corresponding velocities are denoted by the vectors u, ug, and U.
The simplest way of deriving the expression for the corresponding Doppler shifted
frequency is probably to consider the motion from a frame of reference in which the
fluid is at rest. The velocities of the source and the observer are then (u — U) and
(ug — U). The Doppler shift depends on the velocity components in the direction of

A

wave travel and we shall denote by k the unit vector for the direction of propagation
of the wave from the emission point to the observer. These velocity components are
(u—U) -k and (up — U) -k. The Doppler shifted frequency, by analogy with Eq. 3.14,
is then

f'=fl1 —@mo—M) -kl/[1 — (m — M) - k], (3.15)

where m = ug.c, mg = up/c,and M = U/c.

3.1.7 Problems

1. Sound from a swirling sound source
A sound source with a frequency of 100 Hz is located at the end of a string
of length R = 4 m. It is swirled in air in a horizontal plane with an angular veloc-
ity of 0 = 25 sec™ L,
(a) What is the range of frequencies observed by a listener in the same plane as the
motion but outside the circular path?
(b) If the listener is at a point on the axis of the circle, what then is the range?
(c) Comment on the difference between the acoustic Doppler shift and the electromag-
netic.

2. Perception of Doppler shift

In the frequency range between 600 and 4000 Hz, the smallest pitch change that can
be resolved by a normal human ear corresponds to a relative frequency change Af/f
of approximately 0.003.

A sound source emitting a tone of 1000 Hz moves along a straight line with constant
speed. What is the lowest speed of the source that produces an audible pitch change as
the source moves by?

3. Tone from an airplane
A propeller plane emits a tone with a frequency f and flies at a constant speed U along
a straight line, the x-axis, at a constant elevation H. As the plane crosses the y-axis, an
observer at x = 0, y = 0 receives the Doppler shifted frequency 2f and, at a time 7
later, the unshifted frequency f. From these data determine
(a) the Mach number M = U/c of the plane and (b) the elevation H.

4. Wave diagram
A pressure pulse of duration 5 milliseconds is generated at ¢ = 0 at the left end of a
closed tube. The tube contains air and helium separated by a thin, limp membrane
which can be considered transparent to the wave. The total length of the tube is 16 m
and the distance to the membrane from the source is 4 m. The tube is closed by rigid
walls at both ends.
(a) Accounting for the reflection at the boundary between the gases and at the end walls,
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make a wave diagram which covers the first 50 milliseconds.
(b) Indicate in the (¢, x)-plane the region where you expect interference to occur be-
tween reflected and incident waves.

5. Emission angle versus view angle
A sound source moves with constant speed V along a straight line. An observer is located
a distance H from the line. When the observer hears the sound from the source, the
line drawn from the source to the observer makes an angle ¢, with the line of motion.
The corresponding angle at the moment of emission of the sound is denoted ¢.. What
is the relation between the two angles?

6. Doppler shift when observer velocity is supersonic
By analogy with the discussion of the Doppler shift for a source moving at supersonic
speed with the observer stationary, extend the discussion to a stationary source and an
observer moving at supersonic velocity. Let the observer be on the line of motion of the
source.

3.2 Sound Wave in a Fluid
3.2.1 Compressibility

We now turn to the dynamics of waves and start with some observations regarding
the one-dimensional motion of a fluid column (gas, liquid) in a tube when it is driven
at one end by a piston, as indicated in Fig. 3.3.

If the fluid is incompressible, it acts like a rigid body and if the tube is closed at the
end and held fixed, it would not be possible to move the piston. The same conclusion
is reached even with an open tube if is infinitely long since the mass of the fluid
column would be infinite, thus preventing a finite force on the piston to accelerate
the piston and the fluid.

In reality, we know that the piston indeed can be driven by a force of finite amplitude
and that a sound wave can be generated in the tube in this manner. The fallacy of
the conclusion that the piston cannot be accelerated lies in the assumption of an
incompressible fluid; in order for a sound wave to be produced, compressibility is a
necessary requirement and we shall pause here to review this concept.

Compressibility is the measure of the ‘ease’ with which a fluid can be compressed.
It is defined as the relative change in volume per unit change in pressure. If, in a
fluid element of volume V, an increase in pressure, AP, is associated with a change
of volume, AV, the average value of the compressibility in this volume range is,
by definition, —(1/V)(AV/AP). The minus sign is included since an increase in
pressure results in a decrease in volume. The corresponding local’ value of the
compressibility at the volume V is k = —(1/V)dV /d P. Alternately, compressibility
can be defined as the relative change of the density p per unit increase in pressure,
(1/p)dp/d P, this time with a positive sign. Thus, the compressibility is

k=—(1/V)@dV/dP) = (1/p)(dp/dP). (3.16)

The density p is a function of both pressure P and temperature T (or another
pair of thermodynamic variables such as pressure and entropy) and the derivative
dp/dP is ambiguous without specifying the conditions under which the change of
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state takes place. From the elements of thermodynamics it is known that the equation
of state of an ideal gas can be written P = rpT = (R/M)pT where T is the absolute
temperature (in Kelvin, K), » = R/M, the gas constant per unit mass, R, the universal
gas constant (per mole), & 8.3 joule/K, and M, the molar mass in kg. For air,
M ~ 0.029 kg (for steam, M ~ 0.018 kg).

From the equation of state it follows thatd P/ P = dp/p+dT/ T; for an isothermal
change of state, the temperature is constant (dT = 0) so that dP/P = dp/p. This
means that k = (1/p)dp/dP = 1/P. For an isentropic (adiabatic) change of state,
we have dP/P = ydp/p, where y = C,,/C, is the specific heat ratio, ~ 1.4 for air;
the compressibility then becomes ¥ = 1/(y P). Thus,

1/P, isothermal
K= { 1/(y P) isentropic. (3.17)

At a pressure of 1 atm (= 10° N/m2), the isothermal value for air is k ~ 107
m?/N; the isentropic value is smaller by a factor of y.

Fluid is the generic term for liquids, gases, and plasmas (ionized gases). The
compressibility of a liquid normally is much smaller than for a gas. For water it is
about 107> times the value for normal air, and in the analysis of the dynamics of a
liquid, incompressibility (i.e., k = 0) is often assumed. On this basis, many important
aspects of fluid dynamics can be analyzed and understood, but, as already stated, a
compressibility different from zero is required where sound is involved.

3.2.2 Piston Source of Sound

[

PgA

clht

B

(Po+AP)A

pot+hp

4__

T™Tr

udt (c-u)At

Figure 3.3: Sound generation by a piston in a tube.

With the fluid being compressible, let us consider what happens when the piston
in Fig. 3.3 is moved forward with a velocity u during a time At. The velocity of
a fluid element in contact with the piston will have the same velocity. Through
intermolecular collisions this velocity will be transmitted as a wave with a certain



74 ACOUSTICS

wave speed ¢ (as yet unknown) so that at the end of the time interval Ar the wave
front has reached x = cAt.

Since the piston has moved forward a distance uAt¢ during that time, the length
of the wave will be (¢ — u) At at the end of the time interval Az. The fluid velocity
throughout this section is the same as that of the piston, i.e., u. Thus, a length cAt
of the unperturbed fluid of density pp has been compressed to the length (¢ — u) At
with the density p. Conservation of mass requires that

cpp = (c —u)p. (3.18)

For a weak compression, (o — po)/po << 1, this ratio can be expressed in terms of
the compressibility (see Eq. 3.17) as dp/p = kp, where p is the increase in pressure
resulting from the compression. Eq. 5.1 then becomes

u/c=(p—po)/po~ kp. (3.19)

The increase in pressure, p, must equal the force per unit area supplied by the
piston. The corresponding impulse p At delivered by the piston to the fluid column
has produced the momentum pu(c — u) At of the fluid column at the end of the time
interval Az, and it follows from Newton’s law (in the form of the impulse-momentum
relation) that

p = pu(c —u) = (po)u. (3.20)

In the last step in this equation, it is assumed that the velocity u of the piston is
negligible compared to the velocity c of the wave. As we shall see shortly, this linear
approximation is quite good in most of acoustics.

3.2.3 Sound Speed and Wave Impedance

The combination of Eqs. 3.19 and 3.20 yields the following expression for the speed
of sound

Speed of sound; ideal gas

c=/1/(kp) =yP/p =JYyRT/M

[«: Compressibility. p: Density. y: Specific heat ratio, ~ 1.4 for air. R ~ 8.3

joule/K, universal gas constant (per mol). T: Absolute temperature (K). M: Molar
mass, ~ 0.029 kg for air. At 20°C(T = 293 K), ¢ ~ 342.6 m/s for air.]

We have assumed isentropic compression which turns out to be appropriate in most
cases of sound propagation in free field. Within a porous material, on the other hand,
the large heat conduction and heat capacity of the solid material prevent temperature
fluctuations from occurring, and the compressibility becomes closer to isothermal, at
least at sufficiently low frequencies.

The last step in Eq. 3.21 refers to an ideal gas. In that case, the sound speed
depends only on temperature. This is consistent with the molecular model of sound
propagation according to which the sound speed is expected to be approximately
equal to the average thermal speed of the molecules which is known to be proportional
to «/T .

(3.21)
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With R = 8.3 joule-K_l, M = 0.029 kg, y = 1.4 and a temperature of 20°C
(68°F , T = 293K) the sound speed in air becomes 343 m/sec (1125 ft/sec). At a
temperature of 1000 °F , it is 570.6 m/sec (1872.5 ft/sec). The isothermal wave speed
in normal air is smaller than the isentropic by a factor of 1/,/y ~ 0.845 and is ~ 290
m/sec. The experimental evidence for sound waves over a wide range of frequencies
is in overwhelming favor of the isentropic value.

In the linear approximation, # << c, the sound speed is independent of the
strength of the wave, i.e., independent of the fluid velocity u. However, had we not
assumed u << ¢ in Egs. 3.19 and 3.20, we would have found the wave speed to be
¢ + u, where c is the sound speed at the slightly elevated temperature in the wave
due to the compression.

It is sometimes convenient to express the compressibility in terms of the sound

speed. Thus, with ¢ = /I/kp, we get
k=1/(yP)=1/(pc?). (3.22)

The motion thus described is a sound wave. In the linear approximation, u << c,
the sound pressure p is proportional to the fluid velocity u, p = (pc)u, as obtained
from Eq. 3.20. Actually, as derivedin Eqs. 3.19 and 3.20, this relation is valid for awave
traveling in the positive x-direction, with u counted positive in this direction. The
pressure p does not depend on the direction, and for a wave traveling in the negative x-
direction, the fluid velocity becomes negative, and we have to put p = —(pc)u. Thus,
for a plane traveling wave, the relation between sound pressure and fluid velocity is

Pressure—velocity relation in plane wave
p = (pc)u for wave in positive x-direction |. (3.23)
p=—(pc)u for wave in negative x-direction

The constant of proportionality pc is called the wave impedance of the fluid,

Wave impedance

pc = /p/K

[p: Density. c: Sound speed. For air at 1 atm and 20°C(T = 293 K), p ~ 1.27
kg/m3, ¢ & 342.6 m/s, pc ~ 435 MKS. At 0 °C(273 K) the value is ~ 420 MKS. ]

For water vapor at 1000°F (811 K) and a pressure of 1000 psi (% 6.8 - 108 N/m2),
pc ~ 12700 MKS (i.e., about 32 times greater than for normal air). This latter
condition is typical for the steam in a nuclear power plant.

The derivation of the relation between p and u was based on the analysis of a
positive displacement of the piston of duration At generating a compressional wave.
If the piston is moved in the negative direction, a rarefaction (expansion) wave is
generated in which the perturbations of density, pressure, and fluid velocity will be
negative. A succession of positive and negative pulses can be used to build up an
arbitrary time dependence. Thus, for an infinitely extended tube or a tube with an
absorber at the end so that no reflected sound is present, the relation p = pcu is valid
for any time dependence of a wave traveling in the positive x-direction.

(3.24)
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If the tube extends to the left of the piston along the negative x-direction, a negative
displacement (and velocity) of the piston gives rise to a compression wave in the
negative x-direction but the velocity in this wave is in the negative x-direction and
the relation between pressure and velocity is still p = —pcu. In the rarefaction wave
generated in the positive x-direction, both pressure and velocity are negative so that
p = pcu is still valid.

Of particular interest is the harmonic time dependence. Then, for a wave traveling
in the positive x-direction the pressure and velocity waves take the form

p(x,t) = |p|cos(wt — kx)
u(x,t) = (|p|/pc) cos(wt — kx), (3.25)

where k = w/c = 2m/A, as mentioned in Eq. 3.1. For a wave traveling in the
negative x-direction, —kx is replaced by kx and u by —u. Quantity | p| is the pressure
amplitude.

If the piston is located at x = x' rather than at x = 0, the time of wave travel to the
observation point x will be (x —x")/c so that kx in Eq. 3.25 will be replaced k(x — x).
We can incorporate both directions of wave travel by replacing wt = k(x — x’) by
ot — klx — x'|.

Rms value.
The mean square value of the sound pressure is

T
(P20 = (1/T) /0 P2(0ydt (3.26)

and for a harmonic pressure wave, this becomes | pI2/2. The square root of this
quantity is the rms-value of the pressure which for the harmonic wave is

Drms = |p|/\/§ (harmonic wave). (3.27)

It is this value that is usually indicated on instruments that measure sound pressure
and we shall often use the symbol p for it if there is no risk of misunderstanding.

Density and Temperature Fluctuation in Sound

With an isentropic compressibility in the change of state that occurs in a sound wave
we have dP/P = ydp/p. Then, with dP = p follows that the density fluctuation
that is caused by a sound pressure d P = p becomes dp = p/(y P/p) = p/c2.

There is also a temperature fluctuation. From the equation of state P = rpT
follows dP/P = dp/p + dT/T, or dT/T = (y — Ddp/p = (y — 1)p/c. The
acoustic perturbation in temperature is then

dT = (y — DT pJc® = ”T_l(p/P)T. (3.28)

In a plane wave, u = p/pc so that dT = T (y — 1)(u/c).
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Intensity

The work per unit area done by the piston in Fig. 3.3 as it moves forward during the
time At is puAt;itis pu per unit of time. Conservation of energy requires that this
energy must be carried by the wave. Thus, the wave energy per second and unit area
is I = pu; itis called the acoustic intensity. Since p = pcu, it follows that

I(x,1) = p(x, Du(x, 1) = pcu’(x, 1) = (p>(x, 1)/ pc). (3.29)

In the case of a single traveling wave with harmonic time dependence, p(x, 1) =
|p| cos(wt —kx), theintensityis I (x, t) = pclu)? cos®(wt —kx) = | p||u| cos>(wt —kx).
We are generally interested in the time average of the intensity which is I = |p||u|/2.
The same notation, I, will be used for both, but when time is involved, it is shown
explicitly as an argument, I (¢); without this argument, time average is implied. If rms
values p and u are used for the amplitudes, the intensity is simply I = pu = pcu® =
p?/pc. For the traveling wave, it is independent of x.

At the threshold of hearing, with p, = 2 x 1075 N/m2, the threshold intensity is
I, ~ 10712 w/m?.

Acoustic Energy Density

The energy density in a wave is the sum of the kinetic energy density pu’(t)/2 and
the potential or compressional energy density which can be expressed as «p?(t)/2,
where k = 1/(y P) = 1/pc? is the compressibility. In a single traveling wave, with
p = pcu, these quantities are the same and if the total energy density is denoted
W = pu®/2 + kp*/2, it follows that

I =Wc
W = pu?/2 + kp?/2. (3.30)

In asingle traveling wave, the pressure is pcu, and the corresponding reaction force
on the piston that drives the wave is Apcu, proportional to the velocity like a viscous
friction force. If the piston is part of a harmonic oscillator, the power transferred to
the wave results in damping of the oscillator, usually referred to as radiation damping
and the wave impedance pc is often called wave resistance.

Complex Amplitude Description

Suppose a problem has been solved for the complex pressure amplitude p(w) and the
corresponding velocity u(w). How do we use these amplitudes to express the intensity
in the sound field? To find out, we go back to the corresponding real quantities, p(r)
and u(r), and express these quantities in terms of the complex amplitudes. This is
facilitated with the aid of complex conjugate quantities. With reference to Appendix
B, we are reminded that the complex conjugate of a complex number z = r +ix is
¥ =r —ix,sothatr = (z + z%)/2.

Thus, we express p(t) as p(t) = (1/2)(p(w) exp(—iwt) + p*(w) exp(iot) and
u®) = (1/2)(u(w)exp(—iwt) + u*(w)exp(iowt). The time average intensity



78 ACOUSTICS

I = (p(H)u(t)) then becomes I = (pu* + p*u)/4. We note that pu* is the
complex conjugate of p*u so that the sum is twice the real part of pu*. Thus,
with p = |plexp(i¢1) and u = |u|exp(i¢2), we have u™ = |u|exp(—i¢2 and
pu* = |pllulexp(i¢), where ¢ = ¢1 — ¢o. Thus,

I = 1/2)%{pu*} = (1/2)|pllul cos(¢), (3.31)

where ¢ is the phase difference between pressure and velocity. If the amplitudes are
rms values, the factor 1/2 has to be eliminated.

Intensity Probe

An intensity probe consists of two closely spaced microphones in combination with a
two-channel FFT (Fast Fourier Transform) analyzer. The sum of the output signals is
the average sound pressure between the microphones and the difference represents
the gradient of the pressure, respectively. The particle velocity is proportional to the
gradient and the product of these quantities yields the intensity. In terms of the signals
from the two microphones, this turns out to proportional to the cross spectrum density
of these signals, which is automatically determined by the analyzer. All that remains
is a constant of proportionality which can be incorporated in the signal processing
program.

The formal derivation of this result is given below. It is based on the Fourier trans-
forms of the pressure and the velocity and is quite similar to the derivation of the
energy spectrum density discussed in Chapter 2.

Derivation
The sound pressure p(x, t) is expressed in terms of its Fourier amplitude p(v), i.e.,

p(x. 1) = §plx, v)e 2TV dy (3.32)

and the particle velocity u(x, t) in the x-direction in terms of its Fourier amplitude is u(x, v).
Then, from the momentum equation pdu /dt = —dp/dx itfollowsthatu(x, v) = (1/iwp)dp/dx.
The intensity in the x-direction is

1) = p(x, Dulx, 1) = §p(x, V)e 2TV dv§(1/iwp)dp(x, V') /dxe 27V dv/
= (1/iop)§§e 270 gyqy (3.33)

Integrating I (¢) over all times produces § (v +v”) and integration over v’ yields a contribution
only if v/ = —v and we obtain

§I1(t)dt = (1/iwp)§p(x,v)dp(x, —v)/dx dv. (3.34)

The microphones are located at x — d/2 and x 4 d/2 at which points the pressures are py
and pg. We put p(x) = (p1 + p2)/2 and express the gradient as dp(x)/9x = (p2 — p1)/d.
With p(—v) = p*(v), the integrand in Eq. A.9 becomes (p1 + pg)(p; - pf). Neglecting the
term |pa|® — | p1/2 and realizing that pg p is the complex conjugate of pj p3, the remaining
p1Py — p2p] is twice the imaginary part of py p3. Thus, we obtain

§1(ndt = (1/iopd)§23{p1(v)p3 ()} dv = §1 (v)dv, (3.35)
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where the intensity spectrum is
1(v) = 2/wpd)I{p1(v) p5(V)}. (3.36)

With the signals from the two microphones analyzed with a two-channel analyzer, the quan-
tity p1(v) p;(v), the cross spectrum density, is obtained directly from the two-channel FFT
analyzer.

3.2.4 Acoustic Levels. Loudness
Sound Pressure Level

The sound pressures normally encountered in practice cover a wide range, from the
threshold value of hearing, ~ 10~5 N/m?2 up to pressures of the order of 1 atm, ~ 105
N/m?. This represents a range of about 1019, the range for the corresponding inten-
sities and powers then will be about 1029, Under those conditions, it is convenient to
introduce a logarithmic scale for sound intensity such that the ratio of two intensities
is expressed as I} /Io = p?/p3 = 108, where B = log (/) is the intensity ratio
expressed in Bel. Actually, a unit decibel, dB, which is 10 times smaller is generally
used, so that

dB = 10log,,(I\/I2)* = 201og,,(p1/p2). (3.37)

If the rms value of ps is taken to be the hearing threshold p, = 2 x 1075 N/m2, the
dB-value is referred to as the sound pressure level, SPL. For example, at the threshold
value, the SPL is 0 and if p; = 2 N/m2, the SPL is 100 dB. The threshold pressure is
approximately the threshold of hearing of the average human of a pure tone at 1000
Hz. Similarly, if I is taken to be the corresponding reference intensity 10712 w/m2,
the corresponding dB value is called the intensity level.

The acoustic power going through an area A is I1 = I A, where [ is the average
intensity I over the area. The power that corresponds to the reference intensity
I, = 10712 w/m? and an area of 1 m? is the reference power I1, = 10712 w. The
power level of an acoustic power IT expressed in dB.

PWL = 10 log(I1/11,) (3.38)

The acoustic power of a source can be measured by means of an intensity probe by
integrating the normal component of the intensity over a control surface surrounding
the source. The accuracy of this procedure is bestin a free field environment. Another
method s to place the source in a reveruberation room and measure the average sound
pressure level in the room. Then, from the measured reverberation time of the room,
the power output of the source can be determined as described in Chapter 6.

Loudness and Equal Loudness Contoers

Loudness is the subjective measure of the ‘strength’ of a sound. The threshold of hear-
ing depends on frequency as indicated by the bottom curve in Fig. 3.4. At 1000 Hz,
the threshold sound pressure level is set equal to 0. At frequencies below 1000 Hz,
the threshold value of the sound pressure level is higher; at 100 Hz, for example,
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Figure 3.4: Equal loudness contours according to international standards, (ISO).

it is about 23 dB. With the sound pressure level of the 1000 Hz tone of 10 dB, for
example, the sound is, of course, audible with a certain loudness. The loudness level
by definition is the same as the sound pressure level of the tone at 1000 Hz. The
sound pressure level required at another frequency to make it sound as loud as the
1000 Hz tone can readily be determined experimentally and the results obtained over
a frequency range from 20 to 10000 Hz are indicated by the curves in Fig. 3.4. They
are referred to as the equal loudness contour for the loudness level, phons. This value
of the loudness level Ly in phons, by definition, is the same as the sound pressure
level of the 1000 Hz reference tone. The loudness level is often referred to simply as
the sound level.

In a similar manner the contours at other values of the loudness level can be
obtained with the results shown in Fig. 3.4. It is significant that the frequency depen-
dence of the contours depends on the loudness level L y; the increase of the counters
at low frequencies becomes less pronounced with an increasing loudness level.

The loudness level of a complex tone containing a band of frequencies can be
obtained experimentally in an analogous manner by comparing its loudness with the
reference tone at 1000 Hz.

An instrument designed to measure the loudness level, a sound level meter, contains
a standardized frequency weighting network based on the equal loudness contours.
With the frequency weighting factor denoted A(f), the output of the meter, the
loudness level or sound level in dBA, is

dBA =10log U A(f)E(f)df/pf] , (3.39)

where E(f) is the spectrum density and p, the rms value of the reference sound
pressure at the hearing threshold at 1000 Hz. For all the contours, A(1000) = 1, by
definition. For the zero phon contour, A(f) < 1 for f < 1000 and decreases with
decreasing frequency with a corresponding difference between the loudness level and
the SPL. The difference increases with decreasing frequency; for example, at 500 Hz,
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itis about 2.5 dB and at 100 Hz, close to 23 dB. In the range between 1000 and 5000
Hz, A(f) is somewhat larger than 1 with a maximum close to 4000 Hz, indicating
maximum sensitivity of the ear. In Section 3.2.5 we have attempted to understand
the weighting function A(f) in terms of the frequency response of the ear drum to
an incoming wave. The result is summarized in Fig. 3.6, where also A(f) is shown.

Hearing Damage Risk. Annoyance

The loudness level (sound level) is commonly used in efforts to correlate the effects of
noise on man with some physical measure of the sound. For example, the sound level
that is considered to present risk for hearing damage in industry is usually considered
to be 90 dBA for an 8 hour daily exposure. The risk level increases with decreasing
time of exposure; thus, it is set to be 95 dBA for 4 hrs, 100 dBA for 2 hrs, 105 dBA
for 1 hr, 110 dBA for 1/2 hr, and 115 dBA for 1/4 hr and below. At higher exposures,
hearing protection devices should be used. Federal legislation concerning industrial
noise exposure covers this subject in great detail.

Criteria regarding the annoyance of noise can be found in local community ordi-
nances. Typically, a night time criterion level is 40 dBA.

Loudness, Sones

Loudness N is the quantity used to subjectively rank sounds of different loudness
levels. It has been found experimentally that a sound which is judged to have the
same loudness as a 1000 Hz (reference) tone with a sound level Ly is N times louder
(subjectively) than a reference tone of 40 dBA, where

N ~ oLn=40)/10, (3.40)

The scale thus defined expresses loudness in sones and is valid in the range 20 to
120 dBA for L,,.

It follows from this relation that a doubling of the loudness corresponds to an
increase in the sound level by 10 dBA.

The smallest detectable change in loudness (difference limen, loudness) as been
found to correspond to a change in the sound level of 2 to 3 dBA.

The effect of multiple sources on loudness depends on their correlation. The mean
square value of the sum of two pressures p = p1(t) + pa(t) is (P2 = ((p1+p2)?) =
(p12) + (p22) + 2(p1p2). If the pressures are uncorrelated, (p1p2) = 0, and the
mean square value of p is the sum of the individual mean square values. Then, if
(p12) = (p2?), the sound pressure level of the sum of the two pressures will be
1010g(2(p%)/p%) = L + 10log(2) ~ L + 3 dB, where L is the sound pressure level
of each of the two pressures. Thus, a doubling of the intensity or power increases the
sound pressure level by 3 dB. The same holds true for the dBA value if the frequency
spectra of the sources are the same. The corresponding change in the loudness is
then barely noticeable.

If the pressures are perfectly correlated, as is the case if ps = p1, the sum of the
two pressures leads to an increase of the sound pressure level of 101log(4) ~ 6 dB. In
this case the change in loudness is quite apparent.
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3.2.5 Hearing Sensitivity and Ear Drum Response

With reference to the discussion in Section 3.2.4, we present here an attempt to
understand the dBA weighting function A(f) in Eq. 3.39 in terms of the frequency
response of the ear drum to an incoming sound wave.

The ear canal is terminated by the ear drum which is connected to the bones in
the middle ear. They transmit the sound-induced motion of the ear drum to the
fluid filled inner ear, where the fluid motion is sensed and converted into electrical
impulses which are carried by the auditory nerves and then decoded in the brain.

The frequency dependence of the ‘sensitivity’ of the ear was discussed in connection
with the well-known contours in Fig. 3.4 upon which the weighting function A(f) is
based. How is the sensitivity related to the motion of the ear drum? Is it determined
by the frequency dependence of the displacement, velocity, or acceleration of the ear
drum? Or is it the sound pressure spectrum at the ear drum that is essential? We will
try to answer this question by using a simple model of the ear canal and a knowledge
of the input impedance of the ear drum.

Measurements of this impedance have indeed been carried out, see for example
A. R. Moller, J. Acous, Soc. Am. 32, 250-257, (1960), and we shall use these data
here. They cover a frequency range from 200 to 2000 Hz and represent the average of
the results obtained from measurements on ten different ears. In Fig. 3.5 are shown
smoothened versions of the frequency dependence of the normalized resistance and
the magnitude of the reactance; the data have been extrapolated down to 100 and up
to 10000 Hz. We treat the ear canal as a straight, uniform tube which is terminated
by the ear drum. The acoustic field variables at the entrance and the end of the tube
are labeled by the subscripts 1 and 2. Then, with reference to Section 4.4.5 and with
the transmission matrix elements of the ear canal denoted T;;, we have

p1 = T ps + Tiapcus

pcuy = Ta1 pa + Taapcus. (3.41)
30 v
\
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Figure 3.5: Smoothened curves for the frequency dependence of the normalized input resis-
tance and reactance of the ear drum, based on data from Moller referenced in the text. The
experimental data, covering the range 200 Hz to 2000 Hz, to have been extrapolated to the
range 100 to 10000 Hz.
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Furthermore, with the normalized impedance of the eardrum denoted ¢o, it follows
that po = pcus ¢o and if this is used in the first of these equations, the pressure
response ps/p1 and the velocity response pcus/p1 can be obtained directly.

However, as indicated above, it is the incident sound pressure p; rather than the
pressure at the entrance of the ear which is involved in the experimental data on
the hearing threshold, and p; has to be expressed in terms of p;. This can be done
as follows. The scattered pressure at the ear can be expressed as p; = —¢rpcui,
where ¢, is the normalized radiation impedance of the ear (a negative sign has to be
used because the definition of ¢, refers to a velocity in the outward direction and not
the inward direction which is implied in the definition of u1). We also introduce the
normalized input impedance of the ear which follows directly by dividing the relations

in Eq. 3.41,

1 TulH+TI2

S = = . 3.42
Gi pcuy T21¢9 + Tos ( )
Then, with p1 = p; — pcu1¢, and & pcur = p1, we get
gi
1= i (3.43)
P §i + é'r b

Frequency Responses of the Ear Drum

Using this expression for p1 in Eq. 3.41, we can express the velocity of the ear drum
in terms of the incident sound pressure p;,

pcugy & 1

= . (3.44)
Di & + ¢ Tige + T

For ¢, we could use the radiation impedance of a piston in a rigid sphere, as can
be found in acoustics texts,! but, for the present purpose, it is sufficient to a simple
approximate expression

o~ 0.25(ka)? /(1 + 0.25(ka)?) — ika/[1 + (ka)?], (3.45)

where a is the radius of the ear canal and k = w/c.

It remains to discuss the transmission matrix elements. For a loss-free tube we
have to anticipate the results in Eq. 4.116. To account for the flexibility of the tube
walls and a corresponding wave attenuation in the tube, the matrix elements have to

be modified to

T11 = Top = cos(kyd)
Tio = —i(ke/K) sin(ked), Tor = (—i(k/ky) sin(ked), (3.46)

where ky ~ k/1 —n/kd. and k = w/c. The quantity 7 is the normalized admittance
of the wall and d, is the diameter of the ear canal. The complex rather than the

Lgee, for example, Morse and Ingard, Theoretical Acoustics, (1968), p 343.
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Figure 3.6: Frequency response in dB of velocity amplitude of the ear drum using the value
at 1000 Hz as a reference. The computed curves obtained for two different lengths of the ear
canal, 1.5 and 2 cm, are shown. The standard experimentally based A-weight function for the
frequency dependence of the hearing threshold is outlined by the plot markers.

approximate expression for k, cannot be expressed in closed form and we refer to the
quoted reference for further details.

To obtain the numerical result for the velocity response pcus/p; in Fig. 3.6, we
have used the approximate expression for k, and a frequency independent value
of 1.5 for n. The velocity response is expressed as 20log[us(f)/u2(1000)]. The
radius of the ear canal has been set equal to 0.5 cm and two lengths of the canal,
1.5 cm and 2.0 cm, have been used as indicated in the figure. Decreasing n (n = 0
corresponds to the hard-walled tube) produces an increase in the maximum of the
response curve but does not significantly change the response below 1000 Hz. The
computed response curve thus obtained has the same general shape as the accepted
standardized experimentally based ‘A-weighting” function which is outlined in the
figure by the plot markers.

The calculated displacement response of the ear drum has an entirely different
shape; it is almost a constant at frequencies below 1000 Hz and is about 20 dB
higher than the velocity response at 100 Hz. Similarly, the corresponding acceleration
response curve starts out about 20 dB lower than the velocity response at 100 Hz.
Finally, the pressure response is almost constant below 1000 Hz and is about 20 dB
higher than the velocity response at 100 Hz.

Consequently, according to this analysis, there is good reason to believe that it is
the velocity amplitude of the ear drum that is directly correlated with the frequency
dependence of the sensitivity of the ear as expressed by the A-weighting function.

Another point to observe is that the maximum sensitivity is not solely a result
of a ‘quarter wavelength’ resonance of the ear canal, as is sometimes stated. The
frequency dependence of the ear drum impedance is an equally important factor.
The experimental results indicate (see Fig. 3.5 that the reactance becomes zero which
means resonance of inputimpedance of the ear drum) at a frequency of about 1740 Hz.
The maximum sensitivity in our response curve occur at a higher frequency which is
true also for the threshold curve in Fig. 3.4, close to 4000 Hz.
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3.2.6 Problems

1. Sound speed in high temperature steam
The steam (use M = 0.018 kg) in a power plant generally has a temperature of 1000°F
and a pressure of 1000 psi.

(a) What is the speed of a sound wave in the steam? How does the pressure of the steam
affect the result?
(b) What is the wave impedance?

2. Sound pressure level
Consider the sum of two harmonic sound pressures, p = A cos(wt) + B cos(wt — ¢).
(a) What is the resulting sound pressure level as a functionof ¢ if A= B =1 N/m2?
(b) If the sound pressure levels of the individual sound pressures are L1 = 80 dB and
Lo = 85 dB, what is the resulting sound pressure level if ¢ = 0?

3. Sound pressure, particle velocity, displacement, and temperature fluctuation
Determine the amplitudes (rms) of sound pressure, particle velocity, particle displace-
ment, and temperature fluctuation in °C in a plane sound wave with a frequency of
1000 Hz and a sound pressure level of 100 dB.

4. Examples of power levels
Typical values of the total acoustic power outputs from a jet engine, a pneumatic hammer,
and ordinary conversational speech are 10 kw, 1 w, and 20 microwatt, respectively.

(a) What are the corresponding power levels?
(b) What is the sound pressure level of a sound with an rms value equal to 1 atm?

5. Density fluctuations and laser performance
In a pulsed laser, the performance of the laser was found to be affected by the density
variations produced by the ignition pulses. The reason is that the index of refraction
and hence the speed of light depends on the gas density and spatial variations in it will
then distort the optical wave fronts in the laser. If the distortion is sufficiently high,
lasing cannot be achieved. In a particular installation it was estimated that the density

fluctuation amplitude should be less than 10~ of the static value for normal operation
of the laser. What is then the highest permissible sound pressure level in dB in the laser
cavity if the static pressure is 1 atm?

3.3 Waves on Bars, Springs, and Strings

3.3.1 Longitudinal Wave on a Bar or Spring

Wave motion on bars, springs, and strings is analogous to that on a fluid column,
considered in Section 3.2. In a solid bar and one-dimensional motion, the quantity
that corresponds to the compressibility of a fluid is 1/Y, where Y is the Young’s
modulus. The wave speed becomes

v=1\/Y/p (3.47)

and the wave impedance, as before, is pv, where p is the density. The pressure p in
the sound wave is now replaced by the stress o in the material, i.e., the force per unit
area of the rod.

The wave power and intensity has the same form as for the sound wave with the
sound pressure replaced by the stress.
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The Young’s modulus in N/m?2 and density in l<g/m3 are for
Steel: ¥ ~ 20 x 10%°, p = 7.8 x 103
Aluminum, rolled: ¥ = 6.9 x 10'°, p = 2.7 x 103
Tungsten, drawn: ¥ = 35.5 x 10%0, p = 14 x 10°.

For a (coil) spring, the situation is not much different; the Young’s modulus is
replaced by the compliance per unit length. With the spring constant of a spring of
length L being K, the compliance is C = 1/K and the compliance per unit length,
k = C/L. The mass per unit length  of the spring takes the place of the mass density
in the gas. Thus, the longitudinal wave speed on the spring will be

v=11/(p) = V/KL/p. (3.48)

Example

A longitudinal harmonic wave with a frequency of f = 10° Hz is generated in a steel
bar by a piezo-electric crystal mounted at the end of the bar. What should be the
displacement amplitude of the bar in order that the energy flux (intensity) of the wave
be 10w /cm?? Density p = 7.8 g/cmz. What speed v = 5300 m/sec?

With reference to the text, the ratio of the force per unit area and the particle in
a single wave on the bar is equal to the wave impedance Z = pv, where p is the
mass density and v the longitudinal wave speed. The wave power per unit area, the
intensity 7, is then obtained as the time average

I'=2Z{u? = pv(u®) = (1/2) pva’(&),

where the angle brackets indicate time average. In the last step, we have accounted
for the harmonic time dependence in relating the velocity u and the displacement £;
the factor 1/2 is due to time averaging.

Expressing the displacement amplitude in terms of intensity, we obtain the dis-
placement amplitude & = +/21/(pvw?). Numerically, with p = 7800kg/ m>,
v = 5300m/sec, and @ = 2710% we obtain & = 9.8 x 1077 m, ie., about
100 Angstrém.

3.3.2 Torsional Waves

A rod can carry not only a longitudinal but also a torsional wave. To study torsional
wave motion, we proceed by analogy with the discussion of the longitudinal wave in
connection with Fig. 3.3. Thus, during a time Az, the end of the rod is twisted with
an angular velocity 6. The angular displacement travels along the rod as a wave and
at the end of the time interval At, the front of the angular velocity wave has reached
the position x = vAt, where v is the wave velocity, yet to be determined; beyond the
front, there is no angular displacement. We have already calculated the torque in the
discussion of the torsional pendulum in Eq. 2.47; the length of the rod used there
has to be replaced by the length vAt of the activated region here. Since there is no
displacement beyond the wave front, the response of the rod is the same as if the rod
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had been clamped, as was the case in Eq. 2.47. Thus,

T = (Gma*/2)0/(vAt) = (GI/v)d
I =ma*/2, (3.49)

where G is shear modulus and p1 is the moment of inertia per unit length.

After the time interval Az, the bar contains the angular momentum p/ 6(vAt) and,
from conservation of angular momentum, this must equal the angular impulse 7 At,
ie.,

T = plvh. (3.50)

Combining these equations leads to the wave speed

v = JG/p. (3.51)

The driving torque 7, (Eq. 3.50), is proportional to the angular displacement ve-
locity 6; the constant of proportionality pIv is analogous to the wave impedance pv
for the longitudinal wave.

Wave ladder demonstration. A ‘wave ladder’ consists of a long vertical torsion
wire or metal band which is held fixed at its upper end and with equally (and closely)
spaced bars or dumbbells mounted along its entire length. If the lowest dumbbell is
given an angular displacement, a torsion wave is produced which travels up on the
ladder. The speed of this wave is determined by the torsion constant and the moment
of inertia of the dumbbells and can be made very low so that the wave motion can
be easily observed. The excitation can be a pulse or a harmonic motion of the lowest
rod. The wave speed and the wavelength can be measured using simply a ruler and
a stop watch. Various wave phenomena, such as reflection and transmission at the
junction of two ladders with different wave speeds, can be demonstrated.

Problem

1. Wave damper
Discuss the feasibility of an electromagnetic damping device at the end of the ladder
consisting of a conducting disk oscillating in the field of a magnet. The damping is
provided by the induced current in the disk and the electrical resistance of the disk.

3.3.3 Transverse Wave on a String. Polarization

The string considered here is limp (i.e., it has no bending stiffness). This is an
idealization which is satisfactory in most cases. In order to have wave motion, some
form of restoring force is required, and for the limp string, it is provided by a static
tension S (the symbol T would have been better, but it is reserved for the period of
oscillation).

The wave motion to be studied involves a transverse displacement, but otherwise
the arguments given for the sound wave on an air column still apply in principle
(Fig. 3.3). Instead of an axial velocity on an air column, we now generate a transverse
velocity on a string by a driving force F at the end of the string during a time Af
(Fig. 3.7). This disturbance travels out on the string as a velocity wave. At the end of
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Figure 3.7: Transverse wave displacement on a string under tension. The displaced portion
of the string has a transverse velocity u, the same as the velocity of the driving point.

the time interval At, the driving point of the string has moved sideways a distance u At
whereas the front of the wave has reached the position vAr along the string, where v
is the wave speed, yet to be determined. The displacement of the string at time At
is then as shown in Fig. 3.7. If the transverse velocity rather than the displacement
had been plotted, it would have been a square wave with a velocity u in the displaced
portion (the same as at the driving point) and zero elsewhere.

The slope of the displacement is tan(u/v) ~ u/v with the approximation u /v valid
for small displacements. The component of the tension force S in the transverse
direction has to be matched by the driving force, i.e.,

F = Su/v). (3.52)

The impulse delivered by the force during the time Ar is F At which must equal
the momentum of the activated portion vAr of the string, so that FAr = upvAt or

F = (uv)u, (3.53)

where p is the mass per unit length. This has the same form as the relation between
p and u in the sound wave, the wave impedance now being pv.
Combining these two equations yields the wave speed on the string

v=1/S/p. (3.54)

This has the same form as the wave on a rod with S and u taking the places of ¥
and p.

Wave power. If the transverse velocity of the string is u, the power transferred
from the driving force to the stringis W = Fu = (vp)u® = F%/(uv); in a travel-
ing wave, this power is carried along the string. As for the sound wave, there is a
corresponding energy density E such that W = Ev, where v is the wave speed; i.e.,
E = pu?. The kinetic energy density is uu?/2 which makes up half of the total. The
remaining half, the potential energy density, has the same value since the total is wu’
and can be expressed as (1/5) F2/2 with 1/S taking the place of the compressibility
in the corresponding expression kp2/2 for the potential energy density in a sound
wave in a fluid.
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Polarizer for Waves on a String

The wave on a string considered above involved a transverse displacement 7 in the
y-direction for a wave traveling in the x-direction, n = || cos(wt — kx). In this
respect, it resembles more an electromagnetic wave than does a sound wave, and,
as for the electromagnetic wave, the concepts of a plane of polarization and linearly
polarized wave have meaning. In our case, the plane of polarization of the string
wave is the xy-plane. If another similar wave with a displacement in the xz-plane,
¢ = |¢] cos(wt — kx) is superimposed on the first, and the resulting wave will be
linearly polarized in a plane inclined at an angle ¥ = arctan(|n|/|¢|) with respect to
the z-axis.

If this wave is incident on a ‘polarizer,” consisting of a rigid screen with a horizontal,
frictionless slot in the y-direction, the y-component of the wave goes through the
screen unperturbed but the z-component will be totally reflected since the slot forces
the amplitude to be zero at the screen. The corresponding reflection coefficients
for the velocity and displacement are then -1. In other words, the polarizer breaks
up the wave into two linearly polarized components, one transmitted and the other
reflected.

If the z-component of the incident displacement wave lags the y-component by
a phase angle 7/2 so that it is ¢ = o sin(wt — kx), the wave represents a counter-
clockwise swirling motion, a circularly polarized wave. Again, the polarizer lets
through the y-component and reflects the z-component with a reflection coefficient
for displacement of -1. This reflected wave component combines with the incident
wave to form a standing wave but superimposed on it is the traveling y-component
of the displacement.

3.3.4 Problems

1. Radiation load on an oscillator

K/2

Figure 3.8: Damping of oscillator by a string wave.

A mass spring oscillator (M = 2kg, K = 32 N/m) is connected to a long string (tension
S = 100N, mass per unit length u = 0.25kg/m). The mass element is sliding on a
horizontal frictionless guide bar, as shown in Fig. 3.8.

(a) What is the nature of the effect of the string on the oscillator, i.e., is it equivalent to
a mass-, stiffness-, or resistive load?

(b) What is the Q-value of the oscillator, accounting for the effect of the string?

(c) The oscillator is started from an initial displacement A = 5c¢m. Indicate the shape
and length of the wave on the string at the time when the amplitude of the oscillator has
decreased to the value 1/e of the initial displacement.
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2. Maximum wave speed on a string
Consider a string of length L clamped on both ends. To make the wave speed as high as
possible the tension is brought up to correspond to a stress (force per unit area) equal
to the tensile strength of the material. For steel, the tensile strength is 3.2 x 1010 and
for aluminum, .8 x 10° dyne/cm2. The mass density of steel is 7.8 and for aluminum,
2.7 g/em®. Wil the wave speed exceed the speed of sound in air, 340 m/s?

Are the following answers correct? Steel: 640 m/s. Aluminum: 320 m/s.

3. Wave energy on a string
The end of a string is driven at x = 0 in harmonic motion with a frequency 10 Hz and a
displacement amplitude 0.2 m. The wave speed on the string is 10 m/sec and the mass
per unit length 0.001 kg/m.
(a) Calculate the time average power in watts by the wave.
(b) What is the average wave energy per unit length of the string?
(c) What is the change in power and wave energy density if the tension of the string is
doubled?
Are the following answers correct? (a): 7.9 w. (b): 0.79 joule/m. (c): Power increase by
a factor of /2. Energy density remains the same.

4. The complex Young’s modulus
Along glass rod is driven at one end with a transducer producing a longitudinal wave in
the bar. The mass density is pp = 2.5 g/01113 and the Young’s modulus is Yg = 6 x 1011
dyne/cmz. The loss factor is € = 0.1 so that the complex modulus is ¥ = Yy (1 — i€).
(a) What is the wave speed in the rod (neglect losses)?
(b) Accounting for the loss factor, what is the expression for the x-dependence of the
complex amplitude of displacement in the rod? Determine the attenuation in dB in a
distance of 10 m.
(c) Explain why the expression for the complex Young’s modulus hastobe Y = Yp(1—i€)
rather than ¥ = Yy(1 + i€) using our sign conventions in the definition of a complex
amplitude according to which the x-dependence of the complex amplitude of a wave
traveling in the positive x-direction is exp(ikx), where k = /v and v the wave speed.

3.4 Normal Modes and Resonances

3.4.1 Normal Modes and Fourier Series

The standing wave in Eq. 3.6 was a special case of a one-dimensional wave field
involving waves traveling in both the positive and negative x-directions. In that
case the amplitudes of the waves were the same. In a more general wave field the
amplitudes are different both in magnitude and phase and a complex amplitude
description of a harmonic one-dimensional pressure field takes the form

p(x, w) = Aexp(ikx) + B exp(—ikx), (3.55)

where A and B are complex constants and k = w/c. Until these constants are
specified, the wave field applies to any one-dimensional problem. The corresponding
velocity field follows from the equation of motion, —iwpu = —dp/dx,

ux, w) = (1/pc)[Aexp(ikx) — B exp(—ikx)]. (3.56)
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The constants A and B are now chosen in such a manner that the fields apply to
a pipe of length L closed at both ends with rigid acoustically hard walls. This means
that the velocity amplitude at both ends x = 0 and x = L must be zero, i.e.,

A—B=0
Aexp(ikL) — B exp(—ikL) = 0. (3.57)

The first of these refer to x = 0 and yields B = A. In order that the condition at
x = L be satisfied for a value of A different from zero we must have sin(kL) = 0
(recall [exp(ikL) —exp(—ikL)] = 2i sin(ikL)]). Thus, only the frequencies satisfying
this condition are possible, i.e., w,L/c = nm or

V= w, /27 =nc/2L or A, =2L/n. (3.58)

These frequencies are called the characteristic, ‘eigen’ or normal mode frequencies
of the pipe and the corresponding wave fields the normal or ‘eigen” modes

pn(x) =24, cos(kpx) = 2A cos(nmx /L)
u,(x) =i(1/pc)24, sin(nwx/L), (3.59)

where we have used (1/2i)[exp(ikL) — exp(—ikL)] = sin(kL). The factor i =
exp(i/2) in the expression for the velocity merely means that it lags behind the
pressure by an angle /2. To obtain the time dependence, we have to multiply by
exp(—iw,t) and take the real part of the product. For the pressure mode, the resulting
time function is cos(wst — ¢,,), where ¢y, is the phase angle of A,,. The corresponding
function for the velocity mode is cos(w,t — ¢ — 7/2) = sin(wpt — Py).

The modes are called “orthogonal” because the integral of the product of two dif-
ferent modes over the length L is zero,

foL sin(nmx/L) sin(mmx/L)
= (1/2) Jy (cosl(m — nymx /L] — cosl(m +m)ymx/L1 =0 (m #n). (3.60)

If m = n the result is (L/2). Sometimes the normal mode wave function is
normalized to make this integral equal to unity. This wave function is W, (x) =

J2/L sin(nwx/L).

An arbitrary function in this region can be expanded in a series of normal modes
in the same manner as in the Fourier expansion in Chapter 2. Thus, if at r = 0 there
is a pressure distribution p(x, 0), it can be expressed as

p(x,0) =" P, cos(kyx). (3.61)
0

The coefficients P, are obtained by multiplying both sides with cos(k,x) and inte-
grating over L to yield

L
P, = (2/L)/ p(x,0)dx, (3.62)
0
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forn > O0and Py = (1/L) fOL p(x,0)dx. The time dependence of each mode will
be P, cos(k,x) cos(wpt — ¢n). In other words, all the modes and corresponding
frequencies will generally be excited. We shall pursue this question in more detail
later in connection with the motion of a string.

3.4.2 The ‘Real’ Mass-Spring Oscillator

We are now prepared to reexamine the motion of a mass-spring oscillator accounting
for the mass of the spring which was ignored in the analysis in Chapter 2 although
the shortcoming of this omission was discussed.

As we have seen above, the longitudinal wave motion on a coil spring is similar to
that of an air column with the air density replaced by the mass 1 per unit length and
the compressibility by the compliance 1/K L per unit length, where K is the spring
constant. The wave speed on the spring is then v = /KL/p.

The spring is anchored at x = L and the other end is connected to a mass M
which is driven in harmonic motion by a force F(0, r) = |F|cos(wt) at x = 0. The
corresponding complex amplitude is F (0, w). Proceeding by analogy with the sound
wave in the pipe above, the force wave and the corresponding velocity wave on the
spring will have the complex amplitudes

F(x,w) = Aexp(iky) + B exp(—ikx)
u(x, w) = (1/uv)[A exp(ikx) — B exp(—ikx)], (3.63)

where k = w/v. The velocity must be zero at x = L, which yields A exp(ikL) =
B exp(—ikL). The force at the beginning of the spring is then A 4+ B and the velocity
(1/uv)(A — B), where pv is the wave impedance, corresponding to pc for the air
wave. The input impedance of the spring is then

Zy = F(0, w)/u(0, w) = (A + B)/(A — B) = ipwv cot(kL), (3.64)

where we have use 2 cos(kL) = exp(ikL) + exp(—ikL) and 2i sin(kL) = exp(ikL) —
exp(—ikL). This expression can be applied to an air layer in a tube closed at one end
by replacing the wave impedance pv by pc.

As a check on the input impedance we consider very low frequencies for which
cot(kL) ~ 1/kL = v/wL. The impedance is then Z; = ipv /oL = iK /o, where
we have used the expression for the wave speed above, v = /K L/q. This result is
familiar from Chapter 2.

The total input impedance of the oscillator, including the mass, is then Z(w) =
—iwM + Z; and with the complex amplitude of the driving force on the oscillator
being F(w), we get for the velocity of M

u() = F(0)/Z(®) = F()/[—ioM + ipv cot(kL)]. (3.65)

The resonance frequencies of the system are obtained from Z(w) = 0 which can
be written (@M /uv) tan(kL) = 0, or, with k = w/v,

kL tan(kL) = m/M, (3.66)
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where we have introduced the mass of the spring, m = pL.

If the wavelength is much greater than the length of the spring, so that kL << 1,
we get tan(kL ~ kL, and (kL)2 ~ m/M. Tt follows then that a)% = v2m/ML? or,
withm = puL and v* = KL/, wy ~ /K/M, as in Chapter 2. To get an improved
approximation of the lowest resonance frequency, we include one more term in the
expansion of tan(kL), i.e., tan(kL) ~ kL + (kL)3/3 ~ kL(1 + m/3M). Using this
expression in Eq. 3.66, we get for the corresponding resonance frequency

wo ~ JK/(M +m/3). (3.67)

In effect, one-third of the spring mass should be added to M to get the influence
of the spring mass on the lowest frequency.

Higher mode frequencies are obtained by solving the equation numerically. They
can also be deduced by examining the frequency dependence of the velocity or dis-
placement, as obtained from Eq. 3.65. Itisinstructive to study the frequency response
of the displacement for different values of m/M, where m is the spring mass and M
the load mass. (Normalize the frequency with respect to wp = /K /M corresponding
to zero spring mass.) The idealized mass-spring oscillator, with m = 0, has only one
resonance, but the real oscillator has, theoretically, an infinite number.

If M = oo, the resonance frequencies are given by tan(kL) = 0, i.e., kL = nm,
where n = 1,2, .... The resonances then occur when the length L is an integer
number of half wavelengths, analogous to the pipe closed at both ends. M = 0, the
resonance frequencies are obtained from cot(kL) = 0, i.e,, kL = (2n — D)w/4, in
which case the length is an odd number of quarter wavelengths. It corresponds to an
open pipe closed at one end.

Oscillator Response; Analysis without the Use of Complex Amplitudes

For comparison, it is instructive to reconsider the problem above and indicate how it
should be handled without the use of complex amplitudes.

As before, the force wave on the spring will be a superposition of waves in the
positive and negative x-direction, i.e.,

F(x,t) = Acos(wt — ¢, — kx) + B cos(wt — ¢y, + kx), (3.68)

where k = w/v = 27 /A and ¢, and ¢, are phase angles, as yet unknown. The
corresponding velocity field, according to Eq. 3.25, is

u(x,t) = (A/uv) cos(wt — ¢, — kx) — (B/uv) cos(wt — ¢p + kx). (3.69)
The boundary condition at the end of the springis u (L, ) = 0 from which it follows
A cos(wt — ¢y — kL) — B cos(wt — ¢p + kL) = 0.

We expand both the terms using the identity cos(wt — a) = cos(wt) cos(e) +
sin(wt) sin(a). Then, if the condition is to be satisfied at all times, the coefficients
for the cos(wr) and sin(wr)-terms must be zero individually so that two equations are
obtained.
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At the driving end x = 0 end, the equation of motion of M provides the condition
F cos(wt) — F(0,t) = Mdu(0, t)/dt.

Also here we express the time dependence in terms of cos wt) and sin(w?)-terms
and require that the coefficients for these terms be the same on the two sides of the
equation. This yield an additional two equations. Thus, in all we have four equations
for the determination of the amplitudes A and B and the phase angles ¢, and ¢p.

Although straight-forward, this procedure is quite cumbersome and unattractive;
nevertheless, it might be useful to the reader to carry it out for comparison. With
increasing complexity of the problem, this approach becomes even more intractable.

3.4.3 Effect of Source Impedance

The analysis of the frequency response of the mass-spring oscillator in the previous
section s directly applicable to the forced motion of a piston at the entrance of a tube of
length L producing a sound wave in the tube. We then replace the complex amplitude
of the driving force F (0, w) by the sound pressure p(0, w). If M = 0, the solution
applies to the forced motion of an acoustic tube resonator. If the driving pressure
p(0, w) at the tube entrance is constant, independent of frequency, the frequency
response is expressed by the factor 1/ cos(kL), where k = w/c. If, instead, the
velocity amplitude at the entrance to the tube is kept constant, this factor will be
replaced by 1/ sin(kL) (see Problem 3).

In other words, the response depends on the character of the source, whether it
provides a frequency independent velocity or pressure amplitude at the entrance.
This property of the source is often described in terms of the internal impedance
of the source. If this impedance is very high, the velocity will be essentially inde-
pendent of the load impedance and if the source impedance is very low, it will be
the driving pressure that will be frequency independent. These two types of sources
are referred to as ‘constant velocity” and ‘constant pressure’ sources. If the tube is
driven by a piston of mass M and a frequency independent harmonic force, the source
impedance becomes the inertial reactance of the piston; the constant velocity source
then corresponds to a very heavy piston and the constant pressure source, to a very
light piston.

In electrical circuits, another property of a source is the ‘electromotive force.” The
analogous quantity for an acoustic source would be an ‘internal pressure,” as illustrated
in the following example.

In Fig. 3.9 is shown schematically an electrodynamic loudspeaker. It consists of a
coil placed between the poles of a magnet. A cone-shaped piston is attached to the
coil and is set in motion when a time dependent current is sent to the coil. In this
example, we assume that the current / (¢) is harmonic with a frequency independent
amplitude. The force on the coil will be BIL, where L is the length of the wire in
the coil and B the magnetic field. The sound pressure difference on the two sides
of the cone is Ap and if the coil-cone assembly is described as a harmonic oscillator,
mass M, spring constant K, and resistance R, the equation of motion of the assembly
becomes

IBL = ApA + Mdu/dt + K / udt + Ru, (3.70)
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Figure 3.9: Schematic of an electrodynamic loudspeaker.

where A is the equivalent piston area of the cone.
For harmonic time dependence, we get

Ap=(BL/A) - ziu, (3.71)

where z; = (1/A)(—ioM +iK /w + R) is the equivalent internal impedance of the
source and p; = I BL/A, the ‘internal pressure,” both per unit area.

In the design of an efficient loudspeaker we are interested in a ‘smooth’ response of
the sound pressure on the outside of the cone and irregularities in the inside pressure
contribution to the pressure difference Ap due to frequency response of the air in
the speaker cabinet must be considered carefully and should be eliminated or used
appropriately for best performance.

3.4.4 Free Motion of a String. Normal Modes

As we have seen in Section 3.3, the properties of one-dimensional sound waves are
directly applicable to other waves, including the transverse waves on a string. All that
is needed is to replace the sound pressure by the transverse force, the sound speed
¢ by the wave speed v = /S/u, and the wave impedance pc by uv, where § is the
string tension and p the mass per unit length.

By analogy with the normal modes of sound in a pipe closed at both ends, Eq. 3.59,
the normal modes of displacement of a string of length L clamped at both ends are
given by

N (x, 1) = Ay sin(nwx /L) cos(wyt — ¢y), (3.72)

where (w,/v)L = nn, ie., v, = w,/27 = nv/2L where ¢, depends on the initial
condition of the spring. If it is started from rest, ¢, = 0.

3.4.5 Forced Harmonic Motion of a String

The unperturbed string is along the x-axis. The displacement in the y-direction is
n(x, ). An external force f(x,1) is acting on it per unit length. The tension in the
string is §. We isolate an element of length Ax and apply Newton’s law to it. First
we have the external force f(x, t) Ax in the y-direction. Second, there is the tension
acting on the two sides of the element from the rest of the string. If the displacements
of the string is n(x) the slope is 3/9x and the y-component of the tension S acting
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on the element from the left F(x) = —S97/dx (with a positive slope of the string, the
tension force acting on the element has a downwards component, hence the minus
sign). Accounting for both ends of the element, the net transverse force from the
tension is F(x + Ax) — F(x) = —(3F/9x)Ax. Newton’s law then takes the form

wdu/dt = —3F/ox + f(x,1). (3.73)

Itis combined with the expression for F = —S95/0x. Since the equation of motion
contains the velocity u rather than the displacement, we express F also in terms of it
and obtain after time differentiation and with x = 1/§

kdF /3t = —du/dx, (3.74)

where k = 1/8.
Differentiating the first of these equations with respect to ¢ and the second with
respect to x, we can eliminate F and obtain

3%u/ox> — k20%u /01> = —kdf/ot, (3.75)

where k = w/v and v> = 1/k .

Since we are interested in harmonic time dependence, we introduce the complex
amplitudes u(x, w) and f(x, w). Then, with /9t — —iw, where w is the angular
frequency of the driving force, we get

d*u(x, w)/dx® + (w/v)*u(x, w) = iwk f(x, ®). (3.76)

Next, the functions u and f are expanded in terms of the normal modes of the
spring,
u(@) =Y upsintknx), @)=Y fusintknx), (3.77)

where k,L = nm and k, = w, /v. With d%u/dx> = — Zk;zlun sin(ky,x), this equation
reduces to

2:(k2 — k;zl)u,, sin(k,x) = iwk Z f sin(k,x). (3.78)

This equation is satisfied for all values of x only if
() = ik f /(= k3) = —ion (fu/ k) /(1 — Q) (3.79)
where Q, = @/, is the normalized frequency. Withu, = —iw&,, the corresponding

displacement amplitude of the nth mode is
En(w) = Ap/(1— Q7), (3.80)

where A, = «f,/k2 = (1/n)>(ful/S)L. The function &, has the same form as the
frequency response of the harmonic oscillator. In this expression A, is the ‘static’
displacement of the nth mode of the string, corresponding to Q = 0.

This analysis is another example of the considerable importance of the harmonic
oscillator to which we devoted considerable time in Chapter 2. Thus, by decomposing
the displacement of a continuous system into its normal modes, the response to an
external force can be described in terms of harmonic oscillator response functions,
one for each mode.
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Example

Consider a force density distribution with harmonic time dependence (frequency
w) concentrated at the location x” of the string and described by the delta function
f(x) = F(x)8(x — x’). Fourier expansion of this function, ) f, sin(k,x), has the
coefficients f, = (2/L) [(8(x — x)F(x) sin(k,x) = (2/L)F(x') sin(knx"). Then,
according to Eq. 3.79, the complex velocity amplitude of the string becomes

u(x) = (—iwk)(2/Lk2) F (x') Z sin(k,x") sin(k,x) /(1 — Q2). (3.81)

The corresponding displacement function 7(x) is obtained by dividing by —iw).
With « = 1/S and k, L = nrn, the displacement function then can be written

n(x, x') = L©2/nm)>[F(x")/S]sin(k,x") sin(knx)/(1 — Q7). (3.82)

It is the displacement amplitude at x caused by a harmonic force F(x’) at x” at
x'. If this force has unit magnitude, the function is often referred to as the harmonic
Green’s function. The displacement at x produced by a uniform force distribution is
obtained by integrating over x’.

It is important to note that the function sin(k,x") expresses the ‘coupling’ of the
driving force to the nth normal mode. If the location is such that sin(k,x") = 0, the
nth mode will not be excited. The tonal quality, harmonic composition of the sound
produced by plucking a string depends on where it is plucked.

3.4.6 Rectangular Membrane

The derivation of the equation of motion of a membrane is analogous to that of a
string, as described by Eqs. 3.73 and 3.74. The unperturbed membrane is in the xy-
plane and the displacement ¢ is in the z-direction. The tension S in the membrane is
the force per unit length in a cut of the membrane. Then, by analogy with Eq. 3.74
for the string, the z-component of tension force along the edge of length Ay at x is
F(x,y) = —S[3¢(x, y)/dx]Ay. The corresponding component acting on the element
along the edge at x + Ax is S[3¢(x + Ax, y)/3x]Ay and the combination of the two
is $82¢ /0x% AxAy. There is a similar force from the two Ax edges so that the total
force on the element will be S[8%¢/dx> + 32¢/9y?].

Then, with the mass per unit area of the membrane denoted u (not to be confused
with the mass per unit length of a string), the equation of motion becomes

wdc /ot = S[9%¢/ox> + 8¢ /9y?, (3.83)

which is the wave equation for the displacement. With harmonic time dependence,
3/dt — —iwand 3%/3t> — —w? so that the corresponding equation for the complex
displacement amplitude ¢ (x, y, w) becomes

32r /x> + %2 /3y + (w/v)’¢ =0, (3.84)

where v = /S/u is the wave speed on the membrane.
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This is the (wave) equation for the free motion of the membrane. (In this form it
is sometimes called the Helmholtz equation.)

We consider the case when the membrane is clamped along its edges at x = 0,
x =Lj,andy = 0, y = Ly. The equation and the boundary conditions of zero
displacement are then satisfied by a normal mode function

Smn(x, y) = Asin(kpx) sin(k,y), (3.85)

where k, L1 = mm and k, Ly = nm, where m and n are integers.
Insertion of this displacement in Eq. 3.84 yields the expression for the correspond-
ing normal mode frequency

- v\/kgn + k2 = vy Om /L) + (0 / Lo)?. (3.86)

The mnth mode has m — 1 nodal lines perpendicular to the x-axis and n — 1 nodal
lines perpendicular to the y-axis. The normal mode can be regarded as a standing
wave and crossing a nodal line results in a change of sign of the function.

3.4.7 Rectangular Cavity

The normal modes of sound in a rectangular room will be discussed separately in
Chapter 6 and we refer to this and the next three chapters for details. We present
here merely the expression for the normal mode functions and the corresponding
normal mode frequencies. Thus, for a sound pressure field with harmonic time
dependence, with p(x, y, z, 1) = R{p(x, y, z, ) exp(—iwt)}, the three-dimensional
wave equation becomes

2p/ax> + 32p/ay> + 82p/o> + (w/c)’p = 0, (3.87)

where ¢ = /T/kp is the sound speed, «, the compressibility and p, the density.

This equation describes the free acoustic oscillations of the airin the room. With the
walls of the room acoustically hard, so that the normal particle velocity is zero at the
walls, and with the dimensions of the room L1, La, L3 with the origin at one of the
corners, the normal modes are

Pemn = A cos(kiL1) cos(kaLg) cos(ksLs), (3.88)

where ki = € /L1, ko = mm/Ls, and k3 = ns/L3. Then, from Eq. 3.87 follows the
corresponding normal mode frequencies

Wemn = e\ k3 + k3 + k3. (3.89)

3.4.8 Modal Densities

The number of normal modes with frequencies below a specified frequency and the
number of modes in a given frequency range play an important role in many areas of
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physics and engineering from the theory of specific heat to the acoustics of concert
halls.

The frequency of the nth mode on a string clamped at x = 0 and x = L is
v, = nv/2L, where v is the wave speed. The number of modes with frequencies
below a value v is N(v) = 2Lv/v. We define the modal density in “frequency space’
asn(v) =daN@W)v,ie.,

N() =2Lv/v, n(v) =dN©W)/dv =2(L/v) (one-dimensional). (3.90)

In ‘k-space,” with k, = nmw/L, we get N(k) = (L/m)k and n(k) = L /7.

For two-dimensional waves, we consider as an example the modes of a rectangular
membrane in Section 3.4.6. We have k,, = mm /Ly and k, = nz/Ly. The modes
are identified by points in a two-dimensional k-space in which the axes are k,, and
k. The spacing between adjacent points on the two axes are 7/L; and /L2 and
the average ‘area’ in k-space occupied by one mode is 72/(L1Ls. Fora sufficiently
large value of k, the number of normal modes with &, less than k can be expressed
as N(k) = (wk?/4)/(w2/(L1Ls), where wk?/4 is the area in k-space enclosed by
the circle of radius k in the quadrant between the positive axes k;, and k,. With
k = 2mv/v, the corresponding expression for N (v) = (L1Ls/v®)mv2. Thus,

n(v) =dN@v)/dv = (L1La/v*)2mv  (two-dimensional)
N(k) = (k2L1La/4w)  n(k) = ON(k)/dk = (L1La/2m)k.  (3.91)

In a completely analogous manner we obtain for the density of the acoustic modes
in the rectangular cavity

n(v) = (L1LsL3/c®)4mv?  (three-dimensional). (3.92)

It should be noted that the modal density increases with the size of the system,
the length L of the string, the area L1 Ly of the membrane, and the volume L1LyL3
of the cavity. In many engineering problems, this size effect can be of considerable
importance in regard to the risk of exciting resonances and generating instabilities of
oscillation of structures due to the interaction of structural and acoustic modes, as
discussed in Chapter 7.

3.4.9 Problems

1. Response of a tube resonator

(a) Determine the input impedance of an air column in a tube of length L and closed at
the end with an acoustically hard wall.

(b) What is the frequency dependence of the maximum pressure and velocity in the tube
if the velocity amplitude of the driven end is independent of frequency? Do the same if
the driving pressure is independent of frequency. In each case determine the frequen-
cies at which the sound pressure at the end of the tube will be a maximum.

2. Orthogonality of normal modes

(a) The normal modes in a tube resonator of length L, open at one end and closed at the
other, are such that kL = (2n — 1)7r/2, where k = 27 /A = w/c. Show that the integral
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over L of the product of two normal mode wave functions with different values of n is
Zero.

(b) What are the normal mode wave functions for the pressure in an organ pipe of length
L which is open at both ends (assume sound pressure is zero at the ends)? Also show
that the modes are orthogonal.

. Resonance frequencies of a tube resonator

A piston of mass M rides on the air column in a vertical tube of length L, closed at the
bottom with a rigid wall.

(a) By analogy with the analysis of the forced harmonic motion of the ‘real’ mass-spring
oscillator in the text determine the frequency response of the sound pressure in the
tube.

(b) Obtain an equation for the resonance frequencies of this oscillator and indicate how
the equation can be solved graphically.

. Effect of spring mass in the mass-spring oscillator

Following the outline in the text, prove the approximate expression (3.67) for the fun-
damental frequency of a mass-spring oscillator accounting for the mass of the spring.

. Equivalent source characteristics

A loudspeaker is mounted on the side of a tube a distance L from the closed end of
the tube. The tube is so long that reflections from the other end can be ignored. The
loudspeaker has an internal impedance zg and an equivalent internal pressure pg. As
far as sound generation in the tube is concerned, regard the speaker in combination
with the closed end tube section as an equivalent source placed at the location of the
speaker and determine the internal impedance and the internal pressure of this source.
The area of the tube is A and the area of the speaker Ay.

. Maximum frequency of a string

What is the maximum frequency of the fundamental mode that can be obtained with of
a 1 m long string, (a) of steel, (b) of aluminum? Look up the tensile strengths and the
density of these materials in an appropriate handbook. Does the result depend on the
diameter of the string (neglecting bending stiffness)?

. Forced harmonic motion of a string

A string of length L and clamped at both ends is driven by a harmonic force with a
frequency one-tenth of the fundamental normal mode frequency. What is the (relative)
amplitudes of the first five modes of the string if the force is applied (a), at the center of
the string, x’ = L/2, and (b), at x’ = 3L/4?

3.5 The Flow Strength of a Sound Source

In Fig. 3.10 is shown a more general piston source than the one considered in Fig. 3.3;
itis used here to introduce the concepts of the flow strength of an acoustic source. The
source can be regarded as a thin ‘pill box” with moving side walls representing pistons.
The velocities of the pistons are the same in magnitude but opposite in direction so
that the box pumps air in and out of the source region. Thus, if the velocity of the
piston on the right-hand side is u(z), it is —u(¢) on the left. The mass flow rate out
of the source region per unit area is then 2pu(r). From what we have seen so far,
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Figure 3.10: Acoustic piston source pair as a basis for the one-dimensional flow strength of
an acoustic source.

it is clear that this source will generate a plane wave in both the positive and negative
x-directions.

An equivalent mass flow rate out of the source region can be obtained also if we
had a mass injection or creation in the gas at a rate Q ¢ per unit volume. (It can be
shown that heat generation at a rate H per unit volume is acoustically equivalent to
a mass flow rate injection @y = (1/ c2)(y — 1)H, where y is the specific heat ratio
and ¢ the sound speed.)

Then, if the thickness of the box located at x = x” is Ax’, this equivalence requires
that Q ¢ (x", 1) Ax" = 2pu(x’, 1).

From the relation between the plane wave pressure and the velocity, p = pcu
(see Eq. 3.20), it follows that the pressure field contribution at a location x from a
source at x” becomes Ap(x, x", 1) = (¢/2)Q s (x', t — |x —x'| /), where we have used
pu = Ax" Q5 /2 and the fact that there is a time delay |x — x'|/c (i.e., x — x'/c for
x > x’and —(x — x’) /c for x < x’) between the emission at the source and the arrival
of the emitted sound at x. Integrating over the source region, we then obtain the
pressure field from a finite source distribution

plx,t) = (C/Q)/ Qf(x/, t—|x —x'|/c)dx’, (3.93)

where the integral extends over the source region.

As an example, consider harmonic time dependence, Q ¢ (x', 1) = |Q(x")| cos(wt)
and an amplitude |Q (x")| = Q independent of x” in the region between x = —L
and x = L and zero outside. At a point of observation to the right of the source
region, i.e., x > L, we have |x —x’| = x — x’ and the integral becomes

sin(kL)
kL

L
plx, 1) = (ch/Q)/L cos[wt — k(x — x")]dx" = (QfL)

cos(wt — kx),
(3.94)

where we have made use of sin(A + B) = sin(A) cos(B) + cos(A) sin(B).

Let us see if this result makes sense. First we note that if the source region is small
compared to the wavelength, i.e., kL << 1, the factor sin(kL)/kL ~ 1, and the
resultis Q rL cos(wt — kx), i.e., a traveling wave with an amplitude equal Q¢L,i.e.,
half of the total source strength 2L Q ¢. This is as it should be since there is a wave
also in the negative x-direction with the same amplitude. If kL = 7, i.e., 2L = A,
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the amplitude will be zero. This is also as expected, since for each source element on
the right of center there is an element on the left which is half a wavelength removed
so that their pressure contribution arrive at x out of phase by 180 degrees and thus
cancel each other.

It is left as a problem to calculate the pressure field inside the source region. The
integral now has to be broken up into two parts, one for x” < x and one for x" > x.

From a physical standpoint, the equivalent source distribution introduced here is
not very satisfactory if depicted as the rate of ‘mass creation’ or mass injection per unit
volume. In a one-component fluid, such as a neutral gas, there is no mass creation
and mass injection from a foreign object (a tube or the like) is not properly a volume
source and should be treated as a boundary condition. In a multi-component gas,
however, such as weakly ionized gas, there are three components, the neutrals, the
electrons, and the ions. Recombination of electrons and ions leads to the creation of
neutrals so that in the equation for sound generation in the neutral gas component,
there is indeed a mass creation source of sound.

A source distribution due to a heat source with a heat transfer H” per unit volume
is shown in Section 7.9 to be equivalent to a flow source Q r (y — 1)/c2)H’, where
Q is the mass transfer rate per unit volume. It can be realized in practice either
through combustion or absorption of radiation. Its effect is equivalent to that of a
flow source. Thus, sound can be generated by a modulated laser beam in a gas if it
contains molecules with an absorption line at the laser frequency. In fact, this effect
has been used as a tool in gas analysis.

3.5.1 Problems

1. Field inside a uniform source distribution

With reference to Section 3.5 and the uniform source distribution in a tube, calculate
the sound field inside the source region, following the suggestion made in that section.

2. Nonuniform source distribution
Instead of the uniform source distribution leading to the field in Eq. 3.94 use a source
distribution given by Q = |Q| cos(kx’/4L) and determine the pressure field outside the
source region.

3.6 Sound on the Molecular Level

Sound, unlike light, requires matter for its existence and can be regarded as a molec-
ular interaction or collision process.

In a naive one-dimensional model, the molecules in a gas may be pictured as
identical billiard balls arranged along a straight line. We assume that these balls are
initially at rest. If the ball on the left end of the line is given an impulse in the direction
of the line, the first ball will collide with the second, the second with the third, and
so on, so that a wave disturbance will travel along the line. The speed of propagation
of the wave will increase with the strength of the impulse. This, however, is not in
agreement with the normal behavior of sound for which the speed of propagation is
essentially the same independent of the strength. Thus, the model is not very good
in this respect.
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Another flaw of the model is that if the ball at the end of the line is given an
impulse in the opposite direction, there will be no collisions and no wave motion.
A gas, however, can support both a compression and rarefaction wave.

Thus, the model has to be modified to be consistent with these experimental facts.
The modification involved is to account for the inherent thermal random motion of
the molecules in the gas. Through this motion, the molecules collide with each other
even when the gas is undisturbed (thermal equilibrium). If the thermal speed of the
molecules is much greater than the additional speed acquired through an external
impulse, the time between collisions and hence the time of communication between
the molecules will be almost independent of the impulse strength under normal
conditions. Through collision with its neighbor to the left and then with the neighbor
to the right, a molecule can probe the state of motion to the left and then ‘report’ it
to the right, thus producing a wave that travels to the right which involves a transfer
of a perturbation of molecular momentum.

The speed of propagation of this wave, a sound wave, for all practical purposes will
be essentially the thermal speed since the perturbation in molecular velocity typically
is only one-millionth of the thermal speed. Only for unusually large amplitudes,
sometimes encountered in explosive events, will there be a significant amplitude
dependence of the wave speed as demonstrated in Chapter 10. Thus, like the thermal
speed, the wave speed (sound speed) will be proportional to VT, where T is the
absolute temperature.






Chapter 4

Sound Reflection, Absorption,
and Transmission

4.1 Introduction

In Chapters. 2 and 3, complex amplitudes were gradually introduced in the analysis
of simple problems and it was mentioned that with increased problem complexity,
the advantage of complex variables becomes more apparent. This will be further
illustrated in this and subsequent chapters. Actually, after having become used to
solving problems in this manner, it often becomes difficult to do it any other way.

4.1.1 Reflection, an Elastic Particle Collision Analogy

A ball thrown against a rigid wall bounces back with the same speed as the incident
if the collision is elastic. This ‘reflection” is not unlike what happens when a sound
wave strikes a rigid, impervious wall; it is reflected with no change in strength.

Consider next a head-on collision between an incident ball, the projectile, and a
stationary ball, the target. The masses and initial velocities of these balls are M,
Ms, and Uy, Us. It is well known (from billiards, for example) that if the masses are
the same, the projectile comes to rest after the collision and the target acquires the
velocity of the projectﬂe.1 If the masses are not the same, we find the velocities Uj
and U} of the projectile and the target after the collision to be such that

Ty = U/ Uy = 2M1 /(M1 + M5). (4.1)

These results follow from the equations for conservation of momentum and energy
(see Problem 1). The quantities Ry and Ty can be considered to be reflection and
transmission coefficients for velocity.

As we shall find shortly, the expressions for the coefficients of reflection and trans-
mission of a wave at the junction between two transmission lines have the same form
if the masses are replaced by the wave impedances Z1 and Zy of the lines. This does
not mean that the physics involved is identical in the two cases but in a loose sense,
the analogy is intuitively helpful.

o give the game of billiards an additional dimension, let one ball (or more) be heavier than the others
but the same size.

105
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4.1.2 Gaseous Interface

Let us reexamine the example of the reflection of a sound at the boundary between air
and helium columns separated by a limp membrane of negligible mass. We choose
x = 0 at the boundary. The fluid velocities of the incident, reflected, and transmitted
waves at x = 0 are uy, u}, and ujy. Thus, the total velocity in the air at x = 0is u +u)
and in the helium, it is u},. We have then assumed that the helium column is infinitely
long so that we need not be concerned with any reflected wave in it.

According to Eq. 3.23, the sound pressure is p = Zu for wave travel in the positive
and p = —Zu for travel in the negative x-direction, where Z = pc is the wave
impedance of the material that is carrying the wave.

Thus, the total pressure at x = 0 can be written Z1(u1 — u)) in the air and Zouj,
in the helium. The boundary conditions of continuity of velocity and of pressure at
x = 0 are then expressed by

up +uj = uj
Z1(uy —u)) = Zouj (4.2)

from which follows the reflection and transmission coefficients for velocity,

R, =uj/uy = (Z1 — Z2)/(Z1 + Z2)
T, = uy/uy = 271/(Z1 + Z»). (4.3)

These expressions have the same form as Eq. 4.1 for elastic collisions with Z taking
the place of M. The corresponding coefficients for the pressure are

R, =pi/p1 = (Zo— 21)/(Z1 + Z2)
Ty = py/p1 =2Z2/(Z1 + Z»). (4.4)

The power transmission coefficient t, the ratio I;/I; = Zguéz /Z 1u% of the trans-
mitted and incident intensities, becomes
I; 47175 471/Zs
T = — = = .
I (Z1+22)?% [+ (Z1/Z2)P
If the helium column is replaced by a solid bar, the impedance Zs will be much
larger than Zi, so that we may set Zo/Z; ~ oo. In that case R, =~ 1 so that
the reflected pressure wave has about the same amplitude as the incident. The
pressure amplitude at the boundary is then & 2p; (i.e., pressure doubling occurs). If
we have harmonic time dependence, with angular frequency o, the incident pressure
wave will be p; = A cos(wt — kx) and the reflected wave, p; = A cos(wt + kx),
where k = w/c = 2m /). The addition of the two yields the standing wave

(4.5)

p(x,1) = 2A cos(kx) cos(wt) (4.6)

as explained in Chapter 3.

The expressions for the reflection and transmission coefficient apply also to the
various waves on bars, springs, and strings considered in Chapter 3 for the field
variables that correspond to the present ones, velocity and pressure. In each case,
the analogous wave impedance must be used, of course.
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Effect of Membrane Mass

The membrane at the interface between the two gases was assumed to be mass-less in
the analysis above. The result can readily be extended to include the mass as follows.
With the membrane assumed to be limp, its impedance is simply —iwm, where m is
the mass per unit area. The impedance at the end of the air column is the sum of
the membrane impedance and the impedance Z5 of the Helium column. Thus, to
account for the membrane mass we have to replace Zs in Eq. 4.4 by Z}, = Zs —iwm.
The pressure reflection coefficient then becomes

R, =(Zy — Z)/(Zy+ Zy). (4.7)

If m = 0 we obtain the previous result, of course, and with m = oo, the membrane
acts like a rigid wall and the pressure reflection coefficient becomes R, = 1. If the
Helium column is finite and closed at the end, the membrane and the column become
an acoustic tube resonator, which will be discussed later.

With the impedances normalized with respect to Z1 = pcy and with ¢ = Z5/Z;,
the reflection coefficient in Eq. 4.7 takes the general form

Ry, = (52— 1/(g2+1). (4.8)

4.1.3 Reflection from an Area Discontinuity in a Duct

The reflection from the interface between two gases discussed above was due to the
discontinuity of the wave impedance at the interface. The membrane interface added
a mass reactance to the impedance discontinuity and in terms of the effect on the
reflection it is similar to that from an area discontinuity in a duct, shown in Fig. 4.1.
A plane harmonic wave is incident from the left. As it encounters the discontinuity

_

Area Aq Area A

¥=0

Figure 4.1: Reflection from an area discontinuity in a duct.

in area it is partially reflected. To calculate the reflection coefficient we assume
the velocity distribution at the discontinuity to be uniform. In that case, the wave
transmitted to the right will be the same as that produced by a plane piston radiating
into a tube, discussed in Section 6.2.3. It is shown there that the piston generates a
plane wave as well as higher modes. If the frequency is below the cut-off frequency
of the duct, the higher modes will be evanescent and contribute a mass reactive load
on the piston. The corresponding mass per unit area can be expressed as 8p, where
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8 is the mass end correction given in Fig. 6.5. This takes the place of the membrane
mass m in Eq. 4.7.

The corresponding contribution of the higher modes to the radiation impedance
of the piston is then —iw(8p) with the normalized value —ik§. The plane wave
contribution is a resistance pcus, where us is the axial velocity the downstream duct.
Continuity of mass flow requires that the velocity in to the left of the piston at the
piston be u1 = (As/A1)uz. This means that the resistive part of the impedance will
be pcug = pc(A1/Az)uy with the normalized value A1/As. The total equivalent
impedance of the area discontinuity is then

{2 = (A1/Ag) — iké. (4.9)

The corresponding pressure reflection coefficient is then obtained from Eq. 11.69.

Reflection from the End of a Duct

The assumption of a uniform velocity distribution at the area discontinuity in Sec-
tion 4.1.3 is an approximation. The true velocity distribution deviates from it, partic-
ularly in the vicinity of the edges of the discontinuity; a rigorous analysis is beyond
the present scope.

An exact solution of the related problem of the reflection from the open end of a
long circular pipe has been given by Levine and Schwinger in a classic papelr.2 Their
calculated frequency dependence of the magnitude of the pressure reflection coeffi-
cient at the end of the duct for an incident plane wave is shown in Fig. 4.2. In this
figure is shown also the mass end correction A, corresponding to the § in the radia-
tion from the piston in an infinite baffle in Section 5.3.5. The low frequency values

1.0 L L L L L I I
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Figure 4.2: Magnitude R of the pressure reflection coefficient and the mass end correction
A at the open end of an unflanged pipe of radius a. [From H. Levine and J. Schwinger, Phys.
Rev. 73, 383, (1948)].

2H. Levine and J. Schwinger, Phys. Rev. 73, 383, (1948).
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of the end correction and the pressure reflection coefficient at the end of the pipe
were found to be

A =0.6133a
IR| = e~ ka’/2, (4.10)

The value for A should be compared with § = (8/37)a ~ 0.85a for the uniform
piston in an infinite baffle.
The average normalized radiation impedance at the end of the pipe is

=1+R)/(1-R). (4.11)

4.1.4 Problems

1. Review: Elastic collisions

Derive the expressions for the reflection and transmission coefficient in Eq. 4.1.

2. Tennis, anyone?

As arefresher of elementary mechanics, consider the following. The mass M of a tennis
racket is about 5 times the mass m of a tennis ball. The ball initially has no forward
motion, as in a serve, and the speed of the racket as it hits the ball is U.

(a) What will be the speed of the ball after the serve? Treat the problem as a one-
dimensional elastic collision between two bodies. Assume also that the ball is hit at the
center (of percussion) of the racket.

(b) If the mass of the racket is increased by 20 percent (the mass of the ball is kept the
same), what is the percentage increase of the ball speed, assuming the racket speed to
be the same as before (discuss the validity of this assumption)?

(c) What effect does an off-center hit have on the ball speed? Let the radius of gyration
of the racket be R and the distance of the impact point from the center be r.

(d) Repeat the calculation with the ball having a speed U toward the racket before it
is hit. What now is the ball speed after a centered hit with a racket speed U? If the
incident ball speed is the same as the racket speed, what is the percentage increase in
the ball speed after the hit if the racket mass is increased by 20 percent?

(e) With what speed should the racket be moved backwards in (d) to make the ball come
to rest after the impact (stop volley)?

ANSWERS: (a) Ball speed: Uy = %
(b) Increase in ball speed: 2.4 percent.

. -2
(c) Ball speed: Up = T/ M) (2 RY)
(d) Ball speed after hit: Up, = 1+2mU/M + Uy i;ﬁ;%

Increase in ball speed for 20% increase in racket weight: 3.8 percent.

U2 _ 420,

(e) Backwards speed of racket for stop volley: U = TFon /30

3. Coil spring with resistive termination

A coil spring is terminated by a dashpot damper so that the ratio of the driving force and
the velocity at the end is real and equal to R. The wave impedance of the coil spring is
Z. Plot the velocity reflection coefficient as a function of R/Z.
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4. Sound reflections in a duct
(a) Determine the pressure reflection coefficient (magnitude and phase) at an area
transition in a circular duct of radius a at which the area is doubled. What fraction of
the acoustic power is reflected and transmitted?
(b) What is the fraction of power transmission coefficient at the open end of a pipe when
ka = 10?
(c) What is the ratio of the maximum and minimum sound pressures in the standing
wave in the pipe in (b)?

4.2 Sound Absorption
4.2.1 Mechanisms

Sound absorption is the conversion of acoustic energy into heat through the effects
of viscosity and heat conduction. These effects increase with the gradients of fluid
velocity and temperature in the sound field. In free field, far from boundaries, the
characteristics length of spatial variation is the wavelength and the gradients are
proportional to the frequency.

The interaction of sound with solid boundaries gives rise to acoustic boundary layers
in which the gradients and the corresponding viscous and thermal effects are much
larger than in free field. The sound absorption can be considerable, particularly when
porous materials are involved. The ‘contact’ or ‘sonified” area is then large and if the
material is chosen properly, efficient absorption will result. This requires the width
of the pores or channels in the material to be quite small, typically of the order of a
thousandth of an inch.

There are other mechanisms of sound absorption. One involves the separation of
the oscillatory flowin a (large amplitude) sound wave at sharp corners and in orifices;
acoustic energy is then converted into vorticity and then ultimately into heat as a
result of the decay of the vorticity.

A related effect involves the interaction of sound with turbulent flow. The acoustic
modulation of such a flow results in a conversion of sound energy into vorticity.
This effect can be of considerable importance in acoustic resonators. Both of these
mechanisms will be discussed in Chapter 10.

Another effect, normally less significant, involves nonlinear distortion in which a
sound wave at one frequency generates waves at other frequencies. Although the
total energy is conserved, the energy transfer results in attenuation of the primary
wave.

The absorbed energy in a porous material is proportional to the product of the
squared velocity amplitude within the material and the contact area referred to above.
If this area is increased by making the fibers and pores smaller and more numerous,
the density of the material increases. This has the effect of preventing the sound from
effectively penetrating into the material and the average velocity amplitude within
the material decreases. Most of the incoming acoustic energy is then reflected from
the surface and little absorption results. Similarly, if the contact area (and hence the
density of the material) is very small, the sound goes through the material practically
unimpeded and, again, little energy is absorbed. Consequently, there is an optimum
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design of any given absorber configuration where a compromise is struck between
contact area (density) and velocity amplitude. Thus, for each frequency and thickness
of a porous layer there exists an optimum density of the material for maximum sound
absorption as will be discussed further in Section 4.2.8.

4.2.2 The Viscous Boundary Layer

As in steady flow, there is a viscous boundary layer also in oscillatory flow, i.e., in a
sound field. In addition, there is a thermal boundary layer; both play important roles
in sound absorption.

First, let us discuss the viscous boundary layer. Toillustrate it, we consider the shear
flow generated by a flat infinite plate in the plane y = 0. It oscillates in harmonic
motion in the x-direction. Due to friction, this induces a harmonic (shear) in the
surrounding fluid in which the velocity in the air is the same as that of the plate at
y = 0. In the following discussion, the field variables are complex amplitudes. With
reference to derivation following this section, the complex velocity amplitude is found
to decrease exponentially with the distance y from the plate,

Viscous boundary layer
uy = u(0)e! MDY/ dv — 1y (0)e=Y/dvly/dv (4.12)

dy = ovjw ~ 0.22/JF

[v = wu/p: Kinematic viscosity (~ 0.15 for air at 20°C). u: Coefficient of shear
viscosity. p: Density. f = w/2m: Frequency in Hz. In the numerical expression, d,
is in ecm and f in Hz, and it refers to air at 20°C].

The characteristic length d,, at which the velocity amplitude has decreased to
1/e ~ .37 of the amplitude of the plate, is called the viscous boundary layer thickness.
The ‘transmission’ of the motion from the plate out into the fluid is a diffusion process
and the quantity that ‘diffuses’ is the vorticity in the fluid. Associated with this process
is also a phase lag y/d, of the velocity at y with respect to the velocity at y = 0. With
f = 100 Hz, the boundary layer thickness is &~ 0.022 cm in air at room temperature.

Viscous Boundary Layer Derivation

We derive here the expression for the (shear) velocity distribution (Eq. 4.12) in the air above
a plane boundary which oscillates in harmonic motion in a direction parallel to the plane. The
corresponding velocity distribution resulting from the interaction between a sound wave and
a stationary plane boundary is also considered. In the process, the expressions for the surface
impedance in Eq. 4.20 and the viscous dissipation per unit area are obtained.

Aflatplate oscillates in harmonic motion with the velocity ug cos(wt) in the x-direction (in the
plane of the plate). With the y-direction chosen normal to the plate, the rate of momentum flux
(shear stress) in the y-direction is T(y) = —udu/dy so that the net force (in the x-direction)
per unit area on a fluid element of thickness dy is t(y) — 7(y + dy) = —(3t/dy)dy. The
equation for the x-component of the fluid velocity is then

8u_ 0Zu
Par TH2

(4.13)
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The corresponding equation for the complex velocity amplitude u (w) is3
02u
5 T (iwp/pu)u = 0. (4.14)
dy
With k% = iwp/ L, this equation is of the same form as the ordinary wave equation and the
relevant solution is

u = ugefvy = yge=V/dv ¢iy/dv
ky = (A +Dvpw/2n = +10)/dy, (4.15)

where we have usedi = exp(im/2) and+/i = exp(im/4) = cos(w/4)+i sin(w/4) = (A+i) /2.
There is a second solution o exp(—ikyy) but it grows with y and does not fit the ‘boundary
condition” at y = 0o. Such a solution would have to be included, however, if a second plane
boundary were involved above the first.
The velocity amplitude decreases exponentially with y and is reduced by a factor e at the
distance dy above the plate which defines the boundary layer thickness,

0.22
dy =21/ pw =~ ﬁ cm.  (normal air), (4.16)

where f is the frequency in Hz.

The complex amplitude of the shear stress udu/dy on the plate (y = 0) is F = —uikyug =
ug(1 — i)u/dy and the corresponding shear impedance per unit area is

Zs =Ry +1iXs = F/lup = (1 —i)yupw/2 = (1/2)( —i)(kdy)pc, (4.17)

where k = w/c.

In the reverse situation, when the plate is stationary and the velocity of the fluid in the
free stream far away from the plate is u( cos(wt), the corresponding complex amplitude equa-
tion of motion in the free stream is —ipwug = —9dp/dx, where the right-hand side is the
pressure gradient required to maintain the oscillatory flow. If we assume that this pres-
sure gradient is independent of y, the equation of motion in the boundary layer will be
—iwpu(y) = udu/dy% — iwpugy, where we have replaced —dp/dx by —iwpug, as given
above. The solution is u = ug[1 — exp(ikyy)]. Thus, the velocity increases exponentially with
y from 0 to the free stream value u(, and we can use the same definition for the boundary layer
thickness as in Eq. 4.16. The viscous stress on the plate will be the same as before and the real
part represents the resistive friction force per unit area of the plate and is responsible for the
viscous boundary losses in the interaction of sound with the boundary.

The 2’time average power dissipation per unit area in the shear flow at the boundary is simply
Rg|ugl=, ie.,

Ly = Rylug|?® = (1/2)kdy pe lug|?
Ry = (1/2)kdypc = pcy/vw/2c% ~ 2 X IO_Sﬂpc (normal air), (4.18)

where |ug| is the rms magnitude of the tangential velocity outside the boundary layer and Ry
the surface resistance. In the numerical approximation for normal air, f is the frequency in Hz.

The viscous losses per unit area in the shear flow can be obtained also by direct integration
of the viscous dissipation function over the boundary layer, as follows. Consider an element of
thickness Ay. In a frame of reference moving with the fluid with its origin at the center of Ay,

SRecall that the complex velocity amplitude is defined by u () = R{u(w) exp(—iwr)}.
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the velocity at the top surface is (dux /dy) Ay/2. The shear stress is —uduy /dy (in the positive
y-direction) and the power transfer to the element through the top surface (which is in the
negative y-direction) is then uduy /3y (Ay/2)(duy/dy). There is a similar transfer from the
bottom surface, so that the total power transfer per unit volume will be w(duy /3y)(duy /9y).

In harmonic time dependence, the time average of this quantity will be Ly, = udt{(duy /dy)
(u¥/9y)}, where uy is the rms value and u¥ the complex conjugate of uy. With uy, =
ug exp(ikyy), integration from y = 0 to y = oo yields the result in Eq. 4.18.

F = —pdu/dyisthe viscous stress on the surface which can be used to obtain an approximate
value for the impedance per unit length of a channel of arbitrary cross section as long as its
transverse dimensions are large compared to the boundary layer thickness. The flow velocity
in the center of the channel can then be considered to be the free stream velocity. With the
perimeter of the channel denoted S and the area by A, the total viscous stress per unit length
of the channel is SF = SZzu(, where F = —udu/dy and Zg = F/ug. The reaction force on
the fluid will be the same but with opposite sign and the equation of motion for a fluid element
of unit length is —i Awpug = —Adp/dx — SZsug. With Zg = Ry + i Xy, the corresponding
impedance per unit length of the channel is then

. du . .
Z1e = ric +ix1e = (1/ug) <_§> = (S/A)[Rs —iwp +iX;s]. (4.19)
Since Xy represents a mass reactance (i.e., it is negative), as explained earlier, the total reactance
can be written —iwp,, where p, = p + |X|/w is an equivalent mass density. The impedance
per unit length is then z1, = (S/A)[Ry — iwpe].

Surface Impedance for Shear Flow

From the velocity field in the fluid, we can determine, at y = 0, the (shear) stress
—pdu, /3y per unit area of the plate that is required to drive the oscillating flow. The
ratio of the complex amplitudes of this stress and the velocity of the plate is defined as
a surface impedance per unit area. The resistive and reactive parts of the impedance
turn out to be equal and the magnitude of each can be expressed as (kd, ) pc/2, where
k = w/c. From the frequency dependence of d,, (Eq. 4.12) and with reference to
Section 4.2.2, it follows that the surface impedance is proportional to the square root
of frequency,

Zy =Ry +iXs = Flug = (1 — i)/mpw/2 = (1/2)(1 — i)(kdy) pc (4.20)

We can interpret the mass reactance in terms of the total kinetic energy of the
oscillatory flow in the boundary layer. Integrating the kinetic energy density from
0 to 0o, and expressing the result as (1/2)m|ug|?, we find that the corresponding
normalized mass reactance wm/ pc agrees with the expression kd, /2 given in Eq. 4.20.

The reverse situation, when the plate is stationary and the velocity of the fluid far
away from the plate has harmonic time dependence, the fluid velocity goes to zero at
the plate. With reference to Section 4.2.2, the velocity distribution is now

uy(y) = ug(l — ey, (4.21)

where k, = (141i)/d,. The transition from the free stream’ velocity u¢ to zero occurs
in a boundary layer which has the same form as above. This is not surprising since it
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is only the relative motion of the fluid and the plate that should matter. There will
be an oscillatory force on the plate and a corresponding surface impedance Z; per
unit area with a resistive and a mass reactive part, the same as before. This means
that the viscous interaction force on the boundary by the sound field yields not only
a force proportional to the velocity but also a component that is proportional to the
acceleration of the fluid with respect to the boundary.

We can use this impedance as a good approximation also for sound interacting
with curved boundary as long as the radius of curvature of the surface is much larger
than the acoustic boundary layer thickness; the surface can be treated locally as
plane. Using this approximation, we can determine the total surface impedance for
oscillatory flow in a channel of arbitrary cross section as long as the transverse dimen-
sions are large compared to the boundary layer thickness. Thus, if the perimeter of
the channel is S and its area A, the total surface impedance per unit length of the
channel will be (S§/A)Z;. In addition, there is the mass reactance wp of the air itself.
When combined with the reactive part of the surface impedance, the total reactance
can be expressed as wp,, where p, is an equivalent mass density.

4.2.3 The Thermal Boundary Layer

By analogy with the discussion of the viscous boundary layer, we consider next the
temperature field in a fluid above a plane boundary produced as a result of a harmonic
temperature variation of the boundary about its mean value. Temperature rather than
vorticity is now diffused into the fluid, and the temperature field takes the place of the
velocity field in the shear motion discussed above. With reference to the derivation
following this section, the temperature field is described by an equation similar to
that for the diffusion of vorticity and the y-dependence of the temperature is found
to be

Thermal boundary layer
T(y) = t(0)e! I+ = ¢ (0)e=Y/dn ey /dn (4.22)
dy = /2K [pcyo = JK]ic, dy ~ 0.25/ /T

[dp: Thermal boundary layer thickness. ©(y): Temperature amplitude. p: Density.
K: Heat conduction coefficient. c,: Specific heat per unit mass at constant pressure.
In the numerical result, dy, is expressed in cm and f in Hz].

The thermal boundary layer thickness is slightly larger than the viscous (by about
10 percent). The expression for dj can be obtained from the viscous boundary layer
thickness given above by replacing the coefficient of shear viscosity u by K /c,.

The example above with a boundary with a harmonic temperature dependence was
used merely to introduce the idea of the thermal boundary layer. Of more interest
here, of course, is the case of the interaction of a sound wave with an isothermal
boundary. Sufficiently far from the boundary, the conditions are the same as in free
field which means that the change of state is isentropic (adiabatic) and the pressure
fluctuations in the sound field produce a temperature fluctuation. The boundary
has a much greater heat conduction and heat capacity than the air above so that
the conditions at the boundary can be considered to be isothermal, i.e., there is no
temperature fluctuation at y = 0. Thus, there is a transition from isentropic to
isothermal conditions as the boundary is approached, and the transition, as we shall
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see, occurs in a thermal boundary layer. Unlike the example above, the temperature
now goes from its maximum value outside the boundary layer to zero at the boundary.
With reference to the discussion earlier in this section, the complex amplitude of the
temperature is given by

T(y, w) = to[1 — &/ T/ Ay = g4[1 — o=/ ely/dn], (4.23)

where 79 is the amplitude of the temperature fluctuation in the field far away from
the boundary and dj, is the boundary layer thickness given in Eq. A.63.

In the thermal boundary layer the compressibility varies from the isentropic value
in free field, 1/(y P), to the isothermal value, 1/ P, at the boundary (y is the specific
heat ratio, = 1.4 for air, and P the static pressure). In both these regions, a change of
state is reversible and a compression of a fluid element is in phase with the pressure
increase. This means that the rate of compression of a volume element will be
90 degrees out of phase so that there will be no net work done on the element in one
period of harmonic motion. (If the time dependence of pressure is = cos(wt) it will
be sin(wt) for the velocity and the time average of the product will be zero.)

The situation is different within the boundary layer where the conditions are neither
isothermal, nor isentropic. A compression leads to a delayed leakage of heat out of
the compressed region and the build-up of temperature and pressure will be delayed
accordingly. The pressure no longer will be 90 degrees out of phase with the rate of
compression and there will be a net energy transfer from the sound field into the gas
and then, via conduction, into the boundary. The maximum transfer per unit volume
of the gas is found to occur at a distance from the boundary approximately equal to
the boundary layer thickness.

This is the nature of the acoustic losses caused by heat conduction. Formally, it can
be accounted for by means of a complex compressibility & in the thermal boundary
layer. The loss rate per unit volume is then proportional to the imaginary part of
¥. (Compare the complex spring constant in a damped harmonic oscillator, Section
242)

There is some heat conduction also in the free field, far away from the plate, which
leads to a slight deviation from purely isentropic conditions. However, the heat flow is
now a result of a gradient in which the characteristic length is the wavelength A rather
than the boundary layer thickness dj; with A >> dj, this effect can be neglected in
the present discussion.

Thermal Boundary Layer Derivation

We derive here the temperature amplitude distribution over a boundary with a periodic vari-
ation in temperature, the temperature distribution (4.23) resulting from the interaction of a
sound wave with an isothermal boundary. The corresponding complex compressibility in the
boundary layer and the acoustic power loss per unit area of the boundary due to heat conduction
and the total visco-thermal loss are also considered.

By analogy with the discussion of the viscous boundary layer, we consider now the temper-
ature field produced by a plane boundary with a temperature which varies harmonically with
time about its mean value, the variation being 7 (¢) = 7o cos(wt). The temperature away from
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the boundary is obtained from the diffusion equation

at 92t
T (k/Cyp) LT 424
o1 (K/Cpp) 0y (4.24)
where K, Cp, and p are the heat conduction coefficient, the specific heat at constant pressure
and unit mass, and the density, respectively.

For harmonic time dependence (3/8f — —iw) and with the y-dependence expressed as

7(y, w) = 10 expikpy) (4.25)

it follows from Eq. 4.24 that
k7 = i(wpCp)/K

ie.,

kp=@04+1)/dy
dp = 2K /pCpo = M—Iépdu ~0.25//f cm. (normal air) (4.26)

where dj, is the thermal boundary layer thickness and dy, the viscous. In the numerical
approximation, f is the frequency in Hz.
From Eq. 4.25, the complex amplitude of the temperature is

(y, ) = roe_y/d” e/ (4.27)

so that at a distance from the plate equal to the thermal boundary layer thickness, y = dj,, and
the magnitude of the temperature is 1/e of the value at the plate at y = 0.
The ratio of the viscous and thermal boundary layer thicknesses is

dy/dp = /uCp/K = VP

P = uCp/K, (4.28)

where Py is the Prandtl number. For air at 1 atm and 20 degree centigrade, u ~ 1.83 x 1074
CGS (poise), Cp ~ 0.24 cal/gram/degree, and K ~ 5.68 x 107> cal cm/degree, so that
Py~ 0.77, dy/dy ~ 0.88 and k; ~ 0.88ky.

The reverse situation, when the temperature fluctuation in a sound wave far from the plate
is equal to 7y and the temperature fluctuation at the plate is zero (due to a heat conduction
coefficient and a heat capacity of the solid is much larger than those for air), the appropriate
solution to Eq. 4.24 is

7(y, @) = 7ol — 1], (4.29)

This solution is applicable to the case when a harmonic sound wave is incident on the
plate. Far away from the plate, y >> dj,, the conditions in the fluid are isentropic and the
compressions and rarefactions in the sound wave produce a harmonic temperature fluctuation
with the amplitude (see Section 3.2.3, Eq. 3.28)

n="—-L2T. (4.30)

Quantity p is the sound pressure amplitude, y = Cj/Cy, the specific heat ratio, P the
ambient pressure, and T the absolute temperature. The acoustic wavelength of interest is
large compared to the boundary layer thickness so that we need not be concerned about
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any change of the sound pressure with position across the boundary layer. However, the
compressibility varies, going from the isentropic value 1/y P to the isothermal, 1/P, as the
boundary is approached. These values refer to an ideal gas.

To determine the complex compressibility throughout the boundary layer, we start with the
density p(P, T) being a function of both pressure P and temperature T (not only of pressure
alone as in the isentropic case) so that

9 9
dp=(2) ar+ (L) ar. (4.31)
aP ), oT ) p

From the gaslaw, P = rpT, we have (dp/d P)7 = p/P and (8p/dT)p = —p/T. Then, the
quantities d P = p, dp and dT = t(y, w) are treated as complex amplitudes, where 7 is given
in Egs. 4.29 and 4.30 in terms of the sound pressure amplitude d P = p. The compressibility
then follows from Eq. 4.31

& =(1/p)(dp/dP) = ip[l +(y — Dehny giknyy, (4.32)
14

The tilde symbol is used to indicate that the compressibility is complex and different from
the normal isentropic compressibility x = 1/y P =1/ pc2.

Fory =0, k = 1/ P equals the isothermal value, and for y = oo, k = 1/y P, the isentropic
value; in the transition region, & is complex. The imaginary part can be written

ki = k(y — De /% sin(y/dy). (4.33)

It has a maximum 0.321x at y/dj, = /4.

The power dissipation per unit area due to viscosity in the acoustically driven oscillatory
shear flow over a solid wall has already been expressed in Eq. 4.18.

To determine the dissipation due to heat conduction, we start from the conservation of
mass equation for the fluid dp/3r + pdiva = 0. For harmonic time dependence and with
the relation between the complex amplitudes of density and pressure (8 and p) expressed as
8 = pk p in terms of a complex compressibility #, this equation becomes —iwi p + diva = 0.

After integration of this equation over a small volume V with surface area A, and replacing
the volume integral of div u by a surface integral over A, we can express the time average power
R{up px}A transmitted through A into the volume element as R{(—iw)X| pI21V, where uy, is
the inward normal velocity component of the velocity at the surface, |uy| and |p| being rms
values to avoid an additional factor of 1/2. Thus, the corresponding power dissipation per unit
volume becomes

Dy = wki|pl*. (4.34)

The integral of this expression over the boundary layer yields the corresponding acoustic
power loss per unit area of the wall. The integration can be taken from 0 clear out to infinity.
The contribution to the integral comes mainly from y-values less than a couple of boundary
layer thicknesses and quickly goes to zero with increasing y outside the boundary layer. The
pressure amplitude | p| can be taken to be constant throughout the layer since the wavelength
of interest is much larger than the boundary layer thickness. After insertion of the expression
for the compressibility in Eq. 4.32, the loss due to heat conduction per unit area of the wall
can be expressed as

Ly = (1/2)(y — Dkdp|pl?, (4.35)

which is the counterpart of the expression for the viscous power dissipation L, in Eq. 4.18.
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The total visco-thermal power dissipation per unit area of the wall then becomes

Ly = Ly + Ly = (k/2)[dylul®>pc + (y — Ddp|p|%/pe]
~ 2 x 1072/ Fllul®pc + 0.45| p|?/ pcl, (4.36)

where |u| is the tangential velocity outside the boundary layer and |p| the pressure amplitude
at the wall, both rms magnitudes.

4.2.4 Power Dissipation in the Acoustic Boundary Layer

We summarize the result presented in Eq. 4.36 as follows: The acoustic power dis-
sipation at a boundary is the sum of two contributions. The first is due to the shear
stresses in the viscous boundary layer and is proportional to the squared tangential
velocity amplitude just outside the boundary layer. The second is due to the heat
conduction in the thermal boundary layer and is proportional to the squared sound
pressure amplitude at the boundary. The dissipation per unit area of the bound-
ary is obtained by integrating the viscous and thermal losses per unit volume in the
boundary layers as shown above with the result

Power dissipation per unit area in acoustic boundary layer
Ly = Ly + Ly = (k/2)[dyu*pc + (y — Ddn|p|?/pc] (4.37)
~ 2 x 1072 f12[|u|?pc + 0.45|p |2/ pc]

[Ly, Ly: Viscous and heat conduction contributions. d,, dj,: Viscous and thermal
boundary layer thicknesses (Eqs. 4.12 and A.63). |p|: Sound pressure amplitude
(rms) at the boundary. |u|: Tangential velocity amplitude (rms) outside the boundary
layer: The numerical coefficient refers to air at 20°C].

Since the velocity and pressure amplitudes are simply related, the total visco-
thermal power dissipation per unit area at the boundary can be expressed in terms of
either the pressure amplitude or the velocity amplitude.

The result obtained for a plane boundary can be used also for a curved boundary, if
the local radius of curvature is much larger than the thermal boundary layer thickness.

Example. The Q-value of a tube resonator

For a simple mass-spring oscillator with relatively small damping, the sharpness
of its resonance is usually expressed as 1/(2m) times the ratio of the total energy of
oscillation (twice the kinetic energy) and the power dissipated in one period. This
relation is valid also for an acoustic cavity resonator. The total energy of oscillation
is now obtained from the known pressure and velocity fields in the resonator and
by dividing it with the total visco-thermal losses at the boundaries. The Q-value
can be determined since both quantities are proportional to the maximum pressure
amplitude in the resonator.

The constant of proportionality for the total losses contains a visco-thermal bound-
ary layer thickness dy, = dy, + (y — 1)dj,, where d,, and dj, are the viscous and thermal
boundary layer thicknesses and y = C,,/C, & 1.4 (for air) is the specific heat ratio.
If this scheme is used for a circular tube (quarter wavelength resonator), the Q-value
turns out to be simply
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0 ~a/dy, (4.38)

where a is the radius of the tube. By introducing the frequency dependence of the
boundary layer thickness, this can be expressed as &~ 3.11a+/f, where a is expressed
in cm and f is the frequency in Hz. (The expression for a parallel plate cavity is the
same if a stands for the separation of the plates). Thus, a circular resonator with a
radius of 1 cm and a resonance frequency of 100 Hz has a Q-value of 31.1.

In this context, we should be aware of the fact that the boundary layer thickness
depends on the kinematic viscosity v = 1/ p and will decrease with increasing static
pressure at a given temperature (u is essentially independent of density). Thus, if a
very high Q-value is desired in an experiment, a high pressure and a high density gas,
or both, should be used.

In a nuclear power plant, the static pressure of the steam typically is of the order
of 1000 atmospheres and the Q-value of acoustic resonances typically will be very
high (damping low). This has a bearing on the problem of acoustically induced flow
instabilities and their impact on key components in such plants, for example, control
valves and related structures.

4.2.5 Resonator Absorber

In the example about sound transmitted into the (infinitely extended) Helium column,
the sound was absorbed in the sense that it did not return, but not in the sense that it
was converted into heat through friction. When we talk about sound absorption and
sound absorbers in general, it is this latter mechanism which is implied. The study
of sound absorption then involves an identification of the mechanisms involved and
their dependence.*

Rather than terminating the air column by a Helium column, as in the example
referred to above, we now let the termination be a piston which forms the mass in a
damped mass-spring oscillator. We wish to determine the amplitude of the reflected
wave and from it the energy absorbed by the resonator. The resonator is described
by a mass M, a spring constant K, and a dashpot resistance R, all per unit area. The
resonance frequency of the undamped resonator is wy = /K/M, as discussed in
Chapter 2.

In this section we analyze this problem without the use of complex variables. It
is generalized in the next section to a boundary with a given normal impedance and
to oblique angles of incidence of the sound and complex amplitudes are then used
exclusively.

The termination is placed at x = 0; the incident and reflected sound pressures at
this location are denoted p; (t) and p, (¢). The velocity of the piston is u(r). The total
sound pressure driving the piston is then p; + p, and the equation of motion of the
piston is then
du

-+ K/udt = Z()u, (4.39)

pi+pr=ru+m

4An extensive study of absorption is given later.
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where Z (1) is short for r + m(d/dt) + K [ dt. The total velocity in the sound field
at the piston is the sum of the incident and reflected wave contributions, p;/pec and
—pr/pc, which must equal the velocity u of the piston, i.e.,

pi — pr = pcu. (4.40)
Addition and subtraction of these equations yields

2p;i = [Z(t) + pclu
2py = [Z(t) — pclu (4.41)

which establishes the relation between the reflected and incident waves. The time
dependence is harmonic, and the velocity of the piston is put equal to u = |u| cos(wt)
with a phase angle chosen to be zero. Using this expression in Eq. 4.41 yields 2p; =
lu|[(r+pc) cos(wt) —mw sin(wt)+ (K /w) sin(wt)] which can be written 2| p; | cos(wt —
#i), where 2| p;| = /(r + pc)? + (wm — K Jw)?. The expression for 2| p, | is the same
except for a change in sign of pc. Thus, if we introduce the notation X = wm — K /o
(the reactance), it follows that the reflection coefficient for intensity is

R; = |p-1?/|pile = [(r — pc)® + X21/[(r + pc)® + X21. (4.49)

Conservation of acoustic energy requires that the absorbed intensity 1, by the
termination is the difference between the incident and reflected intensities, 1, =
I; — I,. Then, if the absorption coefficient is defined as « = I,/I; it follows that
o = 1— Ry. Itis frequently convenient to normalize the resistance and the reactance
with respect to the wave impedance pc. Then, if we introduce the 8 = r/pc and
the reactance x = x/pc, we get

Ry =[1-0)7+ x21/IA+6)* + x7]
a=1—R; =40/[(1 +6)% + x2). (4.43)

At resonance, x = 0 and @ = 4¢/(1 + 6)% and if 6 = 1, ‘impedance matching,’
100 percent absorption results, @ = 1.

The absorbed acoustic power per unit area can be expressed in terms of the normal
velocity amplitude at the boundary as W = u?pcé or, with pcu® = (p/pc) (0> + x?)
as

W = (p*/po)l6/(0% + X1 = (p*/pe) i, (4.44)

where p is the rms value of the sound pressure at the surface and p the conductance of
the boundary (real part of the admittance). Sound absorption is of obvious importance
in noise control engineering as a means of reducing noise (unwanted sound) and to
modify the acoustics of enclosed spaces. It is usually achieved by applying sound
absorptive material on interior walls but free hanging absorbers, functional absorbers,
are sometimes used.

4.2.6 Generalization; Impedance Boundary Condition

The analysis of reflection and absorption will now be generalized to a boundary which
is specified acoustically by a complex normal impedance z(w), i.e., the ratio of the
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complex amplitudes of sound pressure and the normal component of velocity at the
boundary. It is assumed that this impedance is known from experiments or has been
calculated from known properties of the boundary, as was the case for the resonator
example given in the previous section. The generalization also involves considering

“\q’\y

ky

Figure 4.3: Obliquely incident wave on a boundary.

sound at oblique incidence and we start by discussing the description of such a wave,
shown schematically in Fig. 4.3.

The wave is incident on the plane boundary at x = 0 (yz-plane) under an angle
¢ with the x-axis which is normal to the boundary. Let the coordinate along the
direction of propagation be r. The corresponding vector is . We also introduce the
propagation vector k with the magnitude k = w/c = 27/ and direction along the
line of propagation, i.e., along r. Thus, kr = k-r = k.x + ky,y, where we have
expressed the scalar product k - r in terms of the components k,, k, and x, y of k
and r.

The complex amplitude of the incident plane wave can then be expressed as

pi(@) = |pile™ = |pile’* e, (4.45)
where ky = kcos(¢) and k, = ksin¢. With k = 27/A it follows that k, = 27/A,,
where the geometrical meaning of A, = A/cos ¢ is shown in the figure. It is the
spatial period of the wave in the x-direction (i.e., the distance between two adjacent
wave crests).

The reflected wave from the boundary has a propagation vector with the compo-
nents —k, and ky, so that the complex amplitude of the reflected wave is

pr(@) = |ple ey, (4.46)

The factor exp(ikyy) is of little interest in what we are going to do here so that in
what follows it can be considered included in | p;| and | p;|.
The total sound pressure field on the left side of the boundary is then

p(x) = pi(x) + pr(x), (4.47)

where p stands for the total complex pressure amplitude.
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As discussed in detail in Chapter 5, the velocity field follows from the equation

of motion pdu,/dt = —dp/dx with the complex amplitude version —iwpu,(w) =
—3p(w)/dx.>
We have —iwpu; = —iky p; = —ik cos ¢p; with a similar expression for the re-

flected wave. Thus, the total velocity field that corresponds to the pressure field in
Eq. 4.47is

pcuy = cos @[ p;(x) — pr(x)], (4.48)

where we have made use of k, = kcos¢ and k = w/c.
The complex normal impedance of the boundary (at x = 0) is z, and this condition
requires that p(0)/u(0) = z, i.e.,

pi(0) + pr(0)

= cC , 4.49
PO — pr0) 8 (4.49)

where ¢ = z/pc is the normalized impedance. It follows then that the pressure
reflection coefficient is

Pressure reflection coefficient

Ry(@) = py(0)/pi(0) = (¢ cos ¢ — 1)/ (¢ cos§ + 1) (4.50)

[pi(0), pr(0): Incident and reflected complex pressure amplitudes at the boundary.
¢: Normalized impedance of the boundary. ¢: Angle of incidence].

The ratio of the incident and reflected intensities is I; /1, = |R|? and the ratio of
the absorbed and incident intensityis I,/1; = (I; —I,)/I; = 1—|R 2. In other words,
the absorption coefficient 1, /1; is

a=1-|R>. (4.51)

If the impedance is expressed in terms of a real and imaginary part, { =6 +iy, it
follows from Eq. 4.50 that

Absorption coefficient

Ol((f)) = 46 cos ¢/[(l + 6 cos ¢)2 + (X cos ¢)2] <452)

[0, x: Real and imaginary parts of the normalized boundary impedance. ¢: Angle of
incidence].

As will be discussed in Chapter 6, the sound field in a room often can be approxi-
mated as diffuse, which means that if the field is regarded as a superposition of plane
waves traveling in different directions, the probability of wave travel is the same in all
directions. In regard to the absorption by a plane boundary in such a field, we have
to average the absorption coefficient in Eq. 4.52 over all angles of incidence.

There are many directions of propagation that correspond to an angle of incidence
¢ and these directions are accounted for in the following way. The probability that
acoustic intensity will strike an element of the wall at an angle between ¢ and ¢ + d¢
is proportional to the solid angle 27 sin ¢ d¢, i.e., the ring-like surface element on a
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Figure 4.4: The probability of a wave having an angle of incidence ¢ in a diffuse field is
proportional to the solid angle element (shaded) 27 sin ¢ d¢.

unit sphere centered at the wall element, as indicated schematically in Fig. 4.4. The
power that strikes a wall element of unit area is the product of the intensity i (¢) = 1
and the projection cos ¢ of this area is perpendicular to the incident wave direction.
Thus, a factor cos ¢ has to be included in calculating the average absorption coefficient
which then becomes

f{f/z a(@)2msingcosp ,dp
foﬂ/z 27t sin ¢ cos pd P B

g =

/2
2 / a(¢) sin ¢ cos pdop, (4.53)
0

where a(¢) is obtained from Eq. 4.52. The denominator expresses the total intensity
striking the wall element. The coefficient oz will be called the diffuse field absorption
coefficient, sometimes also called the statistical average. The results in Egs. 4.50 and
4.52 are valid even if the impedance ¢ depends on the angle of incidence. For some
boundaries, called locally reacting, the impedance is independent of the angle and
thus equals the value for normal incidence. The impedance can then be measured
with relatively simple experiments in which the sample is placed at the end of a tube
and exposed to a plane wave of sound, as described in Section 4.2.7. An example of
a locally reacting boundary is a honeycomb structure backed by a rigid wall, in which
the cell size is much smaller than a wavelength. The oscillatory velocity in each of
the cells then depends only on the local pressure at the entrance to the cell and there
is no coupling between the cells, preventing wave propagation along the boundary
within the absorber.

With ¢ independent of ¢, the diffuse field absorption coefficient in Eq. 4.53 can
be expressed in closed form (see Problem 8).

For a nonlocally reacting boundary or boundary with an extended reaction, the
impedance is angle dependent and the experimental data of it are normally not avail-

5An element of thickness Ax has the mass pAx. With the pressure being a function of x, the pressures
at the two surfaces of the elements are p(x) and p(x + Ax) so that the net force on the element in the
x-direction is p(x) — p(x + Ax) = —3p/dx Ax and the equation of motion, Newton’s law, is pdu, /9t =
—dp/dx. For further details, see Chapter 5
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able. For relatively simply types of boundaries, however, the impedance can be cal-
culated, but g generally has to be determined by numerical integration in Eq. 4.52.
An example of a nonlocally reacting boundary is a uniform porous layer backed by a
rigid wall.

Sheet Absorber

As an example of a resonator absorber, we have chosen to analyze an absorber which
is frequently used in practice. It consists of a porous sheet or wire mesh screen
backed by an air layer and a rigid wall, as illustrated schematically in Fig. 4.5. Two
configurations are shown, one with and the other without a honeycomb structure in
the air layer. The honeycomb has a cell size assumed to be much smaller than a
wavelength and it forces the fluid velocity in the air layer to be normal to the wall,
regardless of the angle of incidence of the sound. The first configuration is a locally
and the second a nonlocally reacting absorber, as indicated.

As we shall see, either configuration can be considered to be a form of acoustic
resonator but unlike the resonator absorber in the previous example, it has multiple
resonances. In the present context, the relevant property of a sheet or screen that

Locally reacting Nonlocally reacting

N

NN NN NN

e

Incident
sound wave

Figure 4.5: Porous sheet-cavity absorber. Left: Locally reacting. Right: Nonlocally reacting.

can readily be measured is the steady flow resistance. A pressure drop A P across the
sheet produces a velocity U through the sheet and the flow resistance is defined as
r = AP/U. The same resistance is approximately valid also for the oscillatory flow
in a sound wave.

In the locally reacting absorber, the fluid velocity in the air layer is forced by the
partitions to be in the x-direction, normal to the boundary, so that k, = k. The
normal impedance is simply the sum of the sheet resistance 6 and the impedance of
the air column in a cell which we have found earlier to be i cot(kL) (see Eq. 3.64),
both normalized with respect to pc, where k = w/c and L the thickness of the
air layer. Thus, the absorption coefficient is obtained by inserting the impedance
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¢ =0 +i cot(kL) into Eq. 4.52.
46 cos ¢
(1 4 0 cos ¢)2 + cos2(¢p) cot2(kL)

For the sheet absorber without partitions, the fluid velocity in the air layer is no
longer forced to be in the x-direction and the normal impedance of the air layer has
to be modified. One obvious modification is that we have to use kyL = kL cos ¢
rather than kL. Furthermore, since the normal impedance is the ratio of the complex
amplitude of the pressure and the normal component u, = u cos ¢ of the fluid velocity,
the normalized impedance of the air layer will be i(1/ cos ¢) cos(kL cos ¢). Thus,
the absorption coefficient for the nonlocally reacting sheet absorber becomes (see
Eq. 4.52)

(4.54)

a(p) =

@) 46 cos ¢

a(p) = .
(1 4 6 cos ¢)2 + cot2(kL cos ¢)

The corresponding diffuse field absorption coefficient is obtained from Eq. 4.53.

(4.55)
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Figure 4.6: Absorption spectra of sheet absorber. (a) Normal incidence. (b) Diffuse field,
locally reacting. (c) Diffuse field, nonlocally reacting.

Fig. 4.6 shows the computed frequency dependence of the absorption coefficient
of a sheet absorber in which the frequency parameter is the ratio of the thickness L
and the wavelength 1. On the left, the flow resistance of the sheet is r = pc, i.e.,
0 = 1, and on the right, & = 2. In each graph, three curves are shown; one for normal
incidence and two for diffuse fields corresponding to an air backing with and without
a honeycomb.

When the thickness is an odd number of quarter wavelengths in the locally reacting
absorber, the absorption coefficient will have a maximum. The standing wave in the
air cavity then has a pressure anti-node at the sheet so that there will be no back
pressure on it. Then, if r = pc, the impedance of the absorber is matched to the
wave impedance so that no reflection occurs and all incident sound is absorbed.
On the other hand, when the thickness is an integer number of half wavelengths, the
velocity is zero at the screen so that there will be no absorption (anti-resonance). This
is true for both normal incidence and diffuse field. For nonlocal reaction, however,
the standing wave pattern depends on the angle of incidence and zero absorption
cannot be obtained at all angles of incidence at a given frequency.
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4.2.7 Measurement of Normal Incidence Impedance and
Absorption Coefficient

Before the advent of digital instrumentation and FFT analyzers, the impedance usu-
ally was determined by the standing wave method. The sample was then placed at
the end of a tube and exposed to a pure tone. Then, from the measured ratio of the
maximum and minimum sound pressures in the wave in the tube and the distance
to the first minimum from the sample, the impedance and the absorption coefficient
could be determined. This measurement had to be repeated at every frequency over
the range of interest and was quite time consuming.

Now, with digital instrumentation and the use of a two-channel FFT analyzer in
the so-called two microphone method, the impedance can be determined directly as
a function of frequency from a single measurement with random noise.

Again, the sample is placed at the end of a tube which is now driven at the other
end by a source of random noise, p(1) = [ p(v) exp(—i2nvt)dv. The signals from
two microphones in the tube, separated a distance d, are the inputs to a two-channel
FFT analyzer operating in the transfer impedance mode, which means that the ratio
of the Fourier amplitudes of the two signals, magnitude and phase, is determined
directly by the instrument.

The complex amplitude of the pressure field in the tube at a given frequency is
expressed as

p(x,v) = A(™ + Re™), (4.56)

where k = w/c = 2mv/c and R the complex reflection coefficient from the sample
at the end of the tube.

Let the microphones be located at x = 0 and x = d. The ratio of the corresponding
Fourier amplitudes which is determined by the analyzer is then

1+ R

- - =H®W), (4.57)
exp(ikd) + R exp(—ikd)

p0)/p(d) =

where H (v) is determined by the analyzer over the entire frequency range. It follows
that
R = [H exp(ikd) — 11/[1 — H exp(—ikd)]. (4.58)

From the relation between the reflection coefficient and the impedance of the
boundary in Eq. 4.50, the normalized impedance of the boundary is

{=0+R)/1—-R). (4.59)

With the output H (v) from the analyzer combined with a simple computer pro-
gram, the impedance can be obtained as a function of frequency. The corresponding
normal incidence absorption coefficient is o = 1 — |R|2.

The method assumes a plane wave field in the tube. This means that at frequen-
cies above the cut-on frequency of the lowest higher order mode in the tube (see
Chapter 6), this assumption may not be valid. With a circular tube diameter of D,
the cut-on frequency is ~ ¢/1.7D. Then, with a diameter of 5 cm, the measurements
are limited to the portion of the spectrum below 4000 Hz.
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4.2.8 Uniform Porous Absorber

The most common acoustic absorber used as a wall treatment is a uniform porous layer
of fiber glass, foam, porous metals, etc. Acoustically, it is equivalent to a collection
of closely spaced porous screens; the absorption spectrum is broader than for the
single screen absorber and the anti-resonances are absent. The flow resistance per
unit thickness is obtained in the same way as for the resistive sheet. It is the most
important material property as far as sound absorption is concerned. In this analysis,
the porous frame will be assumed to be rigid.

The oscillatory air flow of the sound within the porous material is forced to follow
an irregular path by the randomly oriented fibers and pores in the material. The
corresponding repeated local changes in direction and speed of the flow results in a
force on the porous material and a corresponding reaction force on the fluid which
is proportional to acceleration and can be accounted for in terms of an induced mass
density. In the mathematical analysis of sound absorption, only an average velocity
is used and the irregular motion and the corresponding inertial reaction force on the
material is accounted for by assigning a higher inertial mass density to the air, the sum
of ordinary mass density and the induced mass density. The effect is analogous to the
apparent increase of mass we experience when accelerating a body in water such as
aleg or an arm. The (empirically determined) factor used to express the apparent
increase in density of the air in a porous material is called the structure factor T'. 1t
is typically 1.5-2.

The heat conduction and heat capacity of a solid material is much larger than for
a gas. As was the case in the thermal boundary layer in Section 4.2.3 this makes
the compressibility different than in free field, far from boundaries. The effect of
heat conduction could be accounted for by means of a complex compressibility and
the same is true in a porous material. Associated with it is a thermal relaxation time
which expresses the time delay between the change in pressure caused by a change
of volume. In harmonic time dependence this means a phase difference between
the two. In a porous material, the relaxation time is related to the pore size which
influences the flow resistance of the material. Consequently, there is a relation be-
tween the thermal relaxation time and the flow resistance and between the complex
compressibility and the flow resistance. If the flow resistance per unit length in the
material is denoted r, it is left as a problem to show that it is a good approximation to
express the complex compressibility as

K~ 1 Q2 ;S (4.60

KNK|:V+(V )[1+92+11+92]i|, .60)
where « is the isentropic (free field) compressibility, @ = w/w,, andw, = r/p. Asthe
frequency goes to zero, k goes to the isothermal value y« and in the high frequency
limit it is k. The transition frequency between the two regions is f, = w,/(2r) =
r/(2mp). In terms of the normalized resistance 8 = r/pc, we get f, = c0/2m.
Thus, for a (typical) material, & = 0.5 per inch and with ¢ ~ 1120 - 12 inch/s, we get
fuv ~ 1070 Hz. In other words, the compressibility will be approximately isothermal
over a substantial frequency range.
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Equations of Motion

In this section we shall outline how the absorption spectra of a uniform porous material
can be calculated in terms of the physical properties of the material. It also serves as
a practical example of the utility of complex amplitudes.

With H being the porosity, the amount of air per unit volume of the porous ma-
terial is Hp. We define the average fluid velocity in the sound field in such a way
that pu (rather than Hpu). We choose this definition since it will make the equa-
tions and boundary conditions simpler. Under isentropic conditions, neglecting heat
conduction, the relation between the density and pressure perturbations § and p is
8/p = kp = 1/pc?, where k (= (1/p)dp/dP) is the compressibility of the fluid
involved and ¢ the ordinary (isentropic) speed of sound. The first term in the mass
conservation equation 9(Hp)/9t + divae = 0 can then be written pxdp/9t and we
get

ap .
Hik— = —div u. (4.61)
ot

In the momentum equation we have to account for both the flow resistance and the
induced mass. Thus, with the flow resistance per unit length of the material denoted
r and the equivalent mass density I'p, where I is the structure factor defined above,
accounting for the induced mass, the momentum equation becomes

alpu
ot

+ru = —grad p. (4.62)

The velocity can be eliminated between these equations by differentiating the first
with respect to time and taking the divergence of the second. With div grad p = V?p,
we then get

2
vZp — (HF/cz)?)Té) - (KrH)Z—’; =0. (4.63)

If the flow resistance is small so that the third term can be neglected, we get an
ordinary wave equation with a wave speed c¢/+/HT. If the flow resistance is large
so that the second term, representing inertia, can be neglected, we get instead a
diffusion equation.

The assumption of an isentropic compressibility in the porous material is unrealistic
because of the narrow channels in the material and the high heat conductivity of the
solid material (compared to air). In harmonic time dependence we can account for
heat conduction by using the making the compressibility complex and, as in Section
4.2.3, we denote it &. Furthermore, in the momentum equation we combine the first
and second term into one, (—iwpl" + r)u = pu, where p is a complex density. The
complex amplitude versions of Eq. 4.61 and 4.62 can then be expressed as

—iwk'p = —divu

—iwpu = —grad p, (4.64)

where p = p(I' +ir/wp) and k" = Hk. Incidentally, the complex compressibility
is analogous to the inverse of the complex spring constant which is used to account
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for compressional losses in a spring in parallel with a dashpot damper. Similarly, the
complex density corresponds to the complex mass in a mass-spring oscillator in which
the forces due to inertia and friction are combined into one.

The complex density contains the flow resistance and the structure factor and on
the basis of the results obtained from this analysis, experiments can be devised for
the measurement of these quantities. For example, they can be obtained from the
measurement of the phase velocity and the spatial decay rate of a sound wave in
a porous material, assuming that the porosity has been determined from another
experiment.

Propagation Constant and Wave Impedance

Eliminating u between the equations in Eq. 4.64, we obtain
V2p 4 pi’ p = 0. (4.65)

With a space dependence of the complex sound pressure amplitude o exp(ig.x +
iqyy +iq;z), we obtain from Eq. 4.65,

a*=q; +q; + a2 =k (5/p)(& /x), (4.66)

where we have used for normalization the isentropic compressibility k = 1/pc? and
k=w/c.
The corresponding normalized propagation constant is

0=q/k=0,+i0 = (5/0&/x), (4.67)

where p and i’ are given in Eqs. 4.64.

The front surface of the porous material is located in the yz-plane at x = 0 and
a plane sound wave is incident on it. The complex pressure amplitude is expressed
as p(x, y,z, w) = Aexp(ikyx +ikyy + ik;z), where, from the wave equation in free
field, we get k2 +k§ +k? = k? = (0/c)?. The direction of the wave is specified by the
polar angle ¢ with respect to the x-axis and the azimuthal angle v, measured from
the z-axis. In other words, the projection of the propagation vector on the yz-plane
has the magnitude k sin ¢ and we have k, = k sin ¢ sin ¥ and k; = k sin ¢ cos .

Similarly, the wave function inside the material is exp(igxx +iqyy + ig.z), where
9> = ¢+ q;z, + ‘122 The wave vector components in the y- and z-direction are
continuous across the surface of the absorber so that g, = ky, = ksin¢ siny and
q; = k; = ksin¢ cosy. This is equivalent to saying that the intersection of the
incident wave front with the boundary and the corresponding intersection of the
wave front in the porous material are always the same.

It follows then that

qx = (@/0)Qx = \/q* — q3 — g7 = \/ 4> — k* sin? ¢ = (w/c)y/ Q2 — sin® ¢,

(4.68)
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where Q = q/k, k = w/c, and ¢ the angle of incidence. The velocity component in
the x-direction is obtained from

9
"y = (1/1'0),3)5, (4.69)

where p/p =5 +izy/wp.
The wave admittance in the x-direction is the ratio uy/p for a traveling wave in
the x-direction for which dp/dx = ig.p. It follows from the equations above that
the normalized value of the wave admittance and the corresponding impedance are

given by
Ox

Nw =1/Cw = pcuy/p = —
p/p

) (4.70)

where Qy is given in Eq. 4.68 and p in Eq. 4.64.

We recall that the input impedance of an air layer of thickness L is z = i (pc)
cot(kL). The impedance of a uniform porous layer has the same general form but
with pc replaced by a complex wave impedance and & by a complex propagation
constant gy, both containing the flow resistance per unit length and the structure
factor. Once the input impedance of the layer has been expressed in this manner,
the absorption coefficient can be computed from Eqs. 4.52 and 4.53. Examples of
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Figure 4.7: Sound absorption spectra of a uniform porous layer of thickness L backed by a
rigid wall. The frequency variable is L/A and the parameter R, ranging from 1 to 32, is the
normalized total flow resistance of the layer. A is the free field wavelength. Left: Normal
incidence. Right: Diffuse field.

computed absorption spectra thus obtained are shown in Fig. 4.7. The graphs on the
left and on the right refer to normal incidence and diffuse field, respectively. The
parameter which ranges from 1 to 32 is the normalized total flow resistance R of the
layer. The absorber is assumed locally reacting. Under these conditions, R-values
less than 1 yield a lower absorption than for R = 1 and generally are of little interest.

With the use of normalized values of the frequency parameter and the flow resis-
tance in this figure, different curves for different layer thicknesses are not needed.
However, in practice, it is more convenient to have the frequency in Hz as a variable.
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We leave it for Problem 9 to plot a spectrum or two in this manner, using the univer-
sal curves in the figure as sources of data. For an R-value of 4 and a layer thickness
larger than one-tenth of a wavelength, the absorption coefficient exceeds 80 percent
for both normal incidence and diffuse fields.

4.2.9 Problems

1.

Surface impedance for shear flow

Following the computational outline in the text, prove that the mass reactance of the
surface impedance in Eq. 4.20 is consistent with the kinetic energy in the oscillatory
flow in the boundary layer.

. Reflection-absorption, anechoic room

In an anechoic room, the walls are usually treated with wedges of porous material,
typically 2-3 feet deep to provide absorption over a wide range of frequencies, from
100 Hz (or lower) to 8000 Hz. In many measurements in such a room, it is desirable
that the reflected amplitude be 20 dB lower than the incident. Show that in order to
achieve this, the absorption coefficient must be at least 0.99.

. Intensity of reflected wave

The absorption coefficient of a 4 inch thick layer of fiberglass mounted on a rigid wall
is 0.8 at 500 Hz. An incident wave with a sound pressure level of 120 dB is incident on
the absorber. Determine

(a) the magnitude of the pressure reflection coefficient.

(b) the intensity of the incident and reflected waves in watts/mZ.

(c) the reduction in sound pressure level after one reflection.

. Transmission of sound into steel from air

(a) Determine the power transmission coefficient and the corresponding transmission
loss for sound transmitted from air into an infinite layer of steel from air. What is the
result if direction of wave travel is reversed?

. Complex boundary impedance

The normalized impedance of a porous layer of thickness L at sufficiently low frequencies
(wavelength A much larger than the layer thickness) is

¢~ 0/3+i/(HykL),

where @ is the normalized values of the total flow resistance of the layer, H, the porosity,
y ~ 1.4, the specific heat ratio for air, and k = w/c = 27 /A.

(a) What is the magnitude and phase angle of the complex pressure reflection coefficient
in terms of the given parameters. In particular, let R = 4, H = 0.95, and L = 4 inches,
and L/A = 0.05.

(b) Show that the normal incidence absorption coefficient can be expressed as

40(kL")2

e NV Y %
N rarea e kD)

where 8 = ®/3and L' = Hy L.

. Standing wave method for impedance and absorption measurement

Consider a tube with a test sample at the end. The wave in the tube is a superposition
of an incident wave and a reflected wave with the complex amplitudes A exp(ikx) and



132 ACOUSTICS

B exp(—ikx). It has the maximum pressure amplitude puax = |A| + |B| where the
incident and reflected waves are in phase and a minimum pp;, = |A| — |B|. If the
measured ratio pmax/Pmin is denoted n, determine

(a) the absorption coefficient.

(b) If the location of the minimum pressure closest to the sample is found to be a distance
d from the sample, determine from this value and n the impedance of the sample.

=~1

. Reflection and absorption by screen in air, steam, and water
A plane resistive screen is stretched across the path of a plane sound wave perpendicular
to the direction of propagation. The flow resistance of the screen is proportional to the
kinematic viscosity of the fluid involved. The normalized flow resistance of the screen
as measured in air at 70°F and 1 atmosphere is 4.
What fraction of the incident intensity is reflected from, transmitted through, and ab-
sorbed within the screen
(a) in air at 1 atm and 70 deg F,
(b) in water, and
(c) in steam at 1000°F and 1000 psi?
Air: Sound speed at 7T0°F : ¢ ~ 342 m/sec. Density: p ~ 0.0013 g/cm3. Kinematic
shear viscosity: v = u/p ~ 0.14.
Water: ¢ ~ 1500 m/sec. p =1 g/cms. v=u/p~0.010 CGS at 70°F .
Steam at 1000°F and 1000 psi: ¢ &~ 697 m/sec. p ~ 18.2 kg/m3. v ~ 0.018. The
conditions given here for steam are rather typical for a nuclear power plant.

8. Diffuse field absorption coefficient; angle independent impedance
(a) Prove that the diffuse field absorption coefficient in Eq. 4.53 for a locally reacting
boundary (i.e., with an angle independent normal impedance { = 6 + ix) can be
expressed in closed form as
ag = %(I—A—I—B) where
A= (0/11%) In[(1+6) + x2]
B =1[(6% - x»/1¢1(1/x) arctan[x /(1 + 6)].

(b) Rewrite this expression in terms of the normalized admittance, n = p +if = 1/¢.

9. Uniform porous layer
(a) Use the data in Fig. 4.7 and plot the normal incidence and diffuse field absorption
coefficient of a 4" uniform porous layer on a rigid wall covering a frequency range from
100 to 4000 Hz. The flow resistance of the material is 0.50c¢ per inch.
(b) At 500 Hz, plot the absorption coefficient versus the flow resistance of the layer
covering the range from 0 to 10 pc per inch.

4.3 Sound Transmission Through a Wall
4.3.1 Limp Wall Approximation

A problem of considerable practical importance concerns the transmission of sound
through a partition wall. For example, building codes contain requirements on the
transmission loss of walls that separate apartments in a building and special laborato-
ries have been established for the measurement of transmission loss.

The physics involved are, in principle, very simple. Sound incident on one side
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of a solid wall causes it to vibrate, and the vibrations radiate sound into the space
on the other side of the wall. For a quantitative analysis, we consider a plane sound
wave incident on a wall or plate of mass m per unit area placed in free field. Only
the mass of the wall will be accounted for; boundary and stiffness effects will be
neglected. This is a good approximation at sufficiently high frequencies, well above
the resonance frequencies of a finite wall; in practice the fundamental frequency of a
wall often is about 10 to 20 Hz which is well below the range of frequencies (typically
125 to 8000 Hz) involved in a transmission loss test.

The complex pressure amplitudes of the incident, reflected, and transmitted pres-
sures at the wall are denoted p;, p,, and p;. With reference to Eqs. 4.45 and 4.46,
the incident, relfected, and transmitted waves are

pi(x) = |pi| e,
prx) = |prl e,
pi(x) = || ek, (4.71)

where the factor exp(ik,y) is contained in |p;|, |p,|, and | p;|, to save some writing.
The angle of incidence is ¢ with respect to the normal to the wall so that k, = k cos ¢
(k=w/c=2m/)\).
Again, with reference to Section 4.2.6, the velocity fields are given by
peuix(x) = |pi] e
pcurc(x) = —|prle
peu(x) = |pi| . (4.72)

—ikyx

The wall is located at x = 0 and we neglect its thickness compared to the wave-
length. The wall is assumed impervious so that its velocity will be the same as the
velocity uy, (0) of the transmitted wave. The equation of motion (Newton’s law) of the
wallis mdu,, /3t = F,where F is the force per unit area. The corresponding complex
amplitude equation is —iwm, u;,(0) = F(w). With F(w) = p;(0) + p-(0) — p; we
get

pi(0) + pr(0) — p: (0) = —iwmu;x(0) = (—iwm/pc) p;(0) cos p, (4.73)

where we have used u;,(0) = (p;(0)/pc) cos ¢. The total velocity amplitude to the
left of the wall is u;, (0) + u,,(0) which must equal u;,(0) and it follows then from
Eq. 4.72 that

pi(0) — pr(0) = p;(0). (4.74)
Addition of Eqs. 4.73 and 4.74 yields

pi = [1 —i(wm/2pc) cos ¢]p;(0) (4.75)
and the transmission coefficient for pressure becomes

Tp($) = pi/pi =1 — i(wm/2pc) cos ]~ (4.76)
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With the incident and transmitted intensities denoted ; and I;, the power trans-
mission coefficient and the corresponding transmission loss are then

Transmission coefficient and transmission loss. Limp wall
©(¢) = I/1; = |tp|* = [1 + (@m/2pc)* cos® ]~ (4.77)
TL = 10log(1/7(¢) = 10log[1 + cos? ¢ (wm/2pc)?]

[t(¢): Power transmission coefficient. I;, I;: Incident and transmitted power. tT),:
Pressure transmission coefficient. m: Mass per unit area. ¢: Angle of incidence. TL:
Transmission loss in dB.]

In most cases of interest, wm/pc >> 1, so that TL =~ 20log(wm/2pc) which is
often referred to as the ‘mass law’ for transmission loss. According to it, a doubling of
mass or of frequency results in an increase of the transmission loss of 20log(2) ~ 6 dB.

As an example, consider a 1/4" thick glass pane with a density of 2.5 g/cm3 so that
m = 1.6 g/ch. With pc = pc = 42 CGS and at a frequency of 1000 Hz, the
transmission loss becomes &~ 41.6 dB at normal incidence.

Diffuse Field

The average transmission coefficient in a diffuse field is obtained in the same manner
as for the average absorption coefficient. All we have to do is replace a(¢) in Eq. 4.53
by 7(¢) to obtain

/2
Ty = 2/ (@) sin ¢ cos pd¢. (4.78)
0

With 7 = 1/[1 + cos ¢ (wm/2pc)?] (Eq. 4.78), it is left for a problem to carry out
the integration and show that

g = (1/8%) In(1 + ), (4.79)

where 8 = (wm/2pc). Thus, the corresponding diffuse field transmission loss be-
comes

TLq = 10log[8%/In(1 + B*)]. (4.80)

In Fig. 4.8 are shown the transmission loss curves (thin lines) for angles of incidence
0, 30, 45, 60, and 80 degrees together with the average values in a diffuse field
(thick line). The parameter that determines the transmission loss, 8 = wm/2pc, is
proportional to the product of mass and frequency. Thus, to obtain the transmission
loss for another mass m than 10 kg/m? at a frequency f we have to use the frequency
value (m/10) f in the graph.

The normal incidence value of the TL is substantially higher than the diffuse field
value. Formally, this can be seen from the expression (4.78) for the transmission coef-
ficient which has its minimum value (maximum TL) at normal incidence. Physically,
it is related to the fact that the wave impedance p;/uix = pc/cos¢ ‘in the normal
direction’ of the incident sound increases with the angle of incidence so that it will
be better matched to the high impedance of the wall, yielding a higher transmission
and lower TL.
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When wm >> pc, which normally is the case, the normal incidence transmission
loss is TL ~ 20log(wm/2pc) so that it increases by 20log(2) ~ 6 dB for every
doubling of frequency or of mass. In a diffuse field, this increase is somewhat smaller,
~ 5 dB.

4.3.2 Effect of Bending Stiffness

A limp panel has no bending stiffness and, like a membrane without tension, is locally
reacting. There is no coupling between adjacent elements and no free wave motion.
The normal impedance —iwm is independent of the angle of incidence, and like
the diffuse field absorption coefficient (Eq. 4.78) for a locally reacting absorber, the
diffuse field transmission coefficient can be expressed in closed form (Eq. 4.79).

The idealization of an infinite limp panel considered so far may at first sight seem
unrealistic. However, as it turns out, the results obtained are quite useful for estimates
of the transmission loss and are almost always used as a comparison with experimental
data. Animprovement can be obtained by accounting for the bending stiffness of the
wall.

Actually, in the model of an infinitely extended panel, stiffness comes into play
only for waves at oblique angles of incidence at which there is a periodic spatial
distribution of pressure along the panel. At normal incidence the pressure is in phase
at all positions on the panel and no bending occurs.

The effect of stiffness becomes most important at short wavelengths when the
radius of curvature of bending becomes small (from everyday experience we know
thatit becomes increasingly more difficult to bend a stiff wire as the radius of curvature
of bending is decreased). Therefore, unlike an ordinary mass spring oscillator, the
response of an infinite panel to an incoming sound wave will be stiffness controlled at
high frequencies and mass controlled at low frequencies. In the low frequency region,

50

TL, dB

Frequency, Hz

Figure 4.8: Transmission loss of a limp wall with a mass 10 l<g/m2 ~ 2.2 b/ Angles of
incidence: 0, 30, 45, 60, 80, and 85 degrees. Thick line: Diffuse field average.
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—= ¢/sing

Figure 4.9: Plane wave of wavelength A incident on a panel; angle of incidence is ¢.

the transmission loss of a stiff panel is then expected to be essentially the same as for
a limp one. For relatively thin panels, such as windows, the transition between low
and high frequencies typically is about 2000 Hz; it decreases with increasing panel
thickness since the bending stiffness increases faster with increasing thickness (as the
third power) than does the mass.

It is not surprising then to find that the bending wave speed increases with fre-
quency. The mass remains the same but the stiffness increases with the inverse of the
radius of curvature and hence with the inverse of the wavelength. The wave speed
is expected to be proportional to the square root of the ratio of the stiffness and the
mass and hence to the square root of frequency. This is indeed the case as the phase
velocity of the bending wave is known to be,’

v = Vh'v'o, (4.81)

where v = /Y /[p,(1 — 02) is the longitudinal wave speed, Y, the Young’s modulus,

pp, the density of the plate, i’ = h/ V12, h, the plate thickness, and o, the Poisson
ratio, typically ~ 0.25.

Consider now a sound wave incident on a panel at an angle of incidence ¢, as shown
in Fig. 4.9. The intersection point between a wave front and the panel moves along
the panel with a velocity

¢ =c/sing, (4.82)

which is always greater than the sound speed c; it will be called the trace velocity c;.
When this velocity coincides with the free bending wave speed vj, wave coincidence
or resonance is said to occur. The mass reactance of the panel is then canceled by the
bending stiffness reactance and if there is no damping, the transmission loss will be
zero. The lowest frequency at which this resonance can occur is obtained for grazing
incidence of the sound, i.e., # = 7/2, in which case the trace velocity is simply the
speed of sound ¢. The corresponding resonance frequency, as obtained from Eq. 4.81
by putting v, = c is

we =2nf. =2 /vh’ (W = h/V/12), (4.83)

6See, for example, Uno Ingard, Fundamentals of waves and oscillations, Cambridge University Press,
1988.
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which is called the critical frequency. Above this frequency there is always an angle
of incidence ¢ at which coincidence ¢; = v}, occurs,

sing =/ fe/fr (4.84)

Thus, at a given frequency, a stiff panel can be said to act like a spatial filter providing
very small transmission loss at the coincidence angle.

For glass, we have Y & 6 x 1011 dyne/cmE, pp ~ 2.5 g/cm3 and o = 0.25. Then, if
the thickness 4 is expressed in cm, the critical frequency in Hz, we get from Eq. 4.83

fo =~ 1264/hHz (hin cm). (4.85)

Actually, this expression is valid approximately also for steel, its higher value of
Y being countered by a higher value for p (~ 7.8 g/cm3). Accordingly, for these
materials, a 1 cm thick panel has a critical frequency ~ 1264 Hz.

For an angle of incidence ¢, it follows from Eq. 4.84 that bending wave resonance
occurs at a frequency

fr = fe/sin® . (4.86)

As for the resonance of a simple mass-spring oscillator, the effects of inertia and
stiffness (in this case bending stiffness) cancel each other and the wall becomes trans-
parent, as already indicated, and the transmission loss would be zero if there were no
damping. There is always some internal damping present, however, and, as we shall
see, it can be accounted for by means of a complex Young’s modulus.

To account for the bending stiffness in the expression for the transmission coeffi-
cient, the impedance —iwm for the limp panel in Eq. 4.76 has to be modified. For
the linear harmonic oscillator the modification involves adding the reactance of the
spring so that —iwm is replaced by —iom + iK /o = —iom(1 — f3/f?). Notice
that in this case the impedance is stiffness controlled at frequencies below the res-
onance frequency, approaching i K /w with decreasing frequency. For the plate, the
situation is reversed, as we have indicated above. The impedance becomes stiffness
controlled at high frequencies (short wavelengths, small radius of curvature) above
the resonance frequency f. and the factor fo/f is found to be replaced by f/f;.

To account for the bending stiffness of the plate, the impedance —iwm in Eq. 4.76
has to be replaced by —iwm[1 — (f/ )21 (not shown in detail here) and with the
expression for f, in Eq. 4.86, the pressure transmission coefficient becomes

T,(¢) = {1 — (iwom/2pc) cos® P[1 — (w/ Q)? sin* ¢} 7! (4.87)

and the transmission loss
TL = 10log(1/|7,?), (4.88)

where w, = 27 f,. We can express the entire frequency dependence in normalized
form by replacing wm by (w/wc)mw.. Then, with the expression for w. in Eq. 4.83
and with m = p, h, we introduce the dimensionless parameter

1= moe/2pc = pph(c?/vh)/2pc = v/3(py/p)(c/v). (4.89)
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In terms of it and with @ = @/w, the pressure transmission coefficient takes the
form
(@) = [1 —iuQcosp(l — Q% sin* ¢)] 7! (4.90)

and the transmission loss
TL = 10log|1/7,[*. (4.91)

The quantity 4 = wcm/2pc = \/§(c/v)(p,,/p) depends only on the material
constants v (see Eq. 4.81) and p,, of the plate and not explicitly on m or the thickness /.
If we wish to account for internal damping in the plate, a final modification of 7, in
Eq. 4.90 is needed. Normally, this is done by making the Young’s modulus complex,
ie., Y is replaced by Y (1 — i€), where € is the loss factor. This means that w. and
hence Q. = w/w. becomes complex with w, replaced by w.+/1 —i€. An example
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Figure 4.10: Transmission loss of a window.
Left: Glass, 5/16" thick, size: 7 x 9". Loss factor: 0.05. Right: ‘Universal’ TL characteristics
of glass.

of the computed TL versus frequency for the infinite panel is shown on the left in
Fig. 4.10 for angles of incidence 0, 30, 45, 60, 80, and 85 together with the average
transmission loss in a diffuse sound field (thick curve). It refers to a 5/16" thick 77 x 9
glass window, 77 x 9°, with a loss factor of 0.05, as indicated. For comparison, refer to
Fig. 4.8 for the TL of alimp panel. It should be noted that in the mass controlled low
frequency region, it is essentially the same as the TL for the panel with stiffness. The
normal incidence TL, corresponding to an angle of incidence of 0 degrees (the top
thin line), is substantially higher than the diffuse field value over the entire frequency
range.

The critical frequency, obtained from Eq. 4.83, is 1592 Hz. The resonance (coin-
cidence) frequencies for different angles of incidence are consistent with Eq. 4.86.
For example, at an angle of incidence of 45 degrees, the resonance frequency is
2 fe = 3184 Hz. The resonance frequency decreases with increasing angle of inci-
dence until it reaches f, at 90 degrees. The dip in the diffuse field average transmis-
sion loss occurs somewhat above f.

The average TL in a diffuse sound field is obtained from Eq. 4.78 using the new
value of 7 in Eq. 4.90 (with a complex ;). The integration has been carried out
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numerically. At frequencies above the critical frequency, the number of angles used
in the integration has to be quite large for small values of the loss factor in order to
avoid irregularities in the TL curve. If there is no loss and for f > f there is always
an angle, the coincidence angle given by sing = /f./f, at which the transmission
loss is 0.

At frequencies below the critical frequency, the TL is nearly the same as for the
limp panel and the loss factor has essentially no effect on the transmission loss; above
this frequency, however, increased damping yields higher TL.

The experimental diffuse field data shown in the figure are in good agreement with
the computed. However, if the panel size becomes smaller than the wavelength of
the free bending wave of the panel, the agreement becomes less good, as anticipated.
With the phase velocity of the bending wave given by Eq. 4.81 the corresponding
wavelength is A = v, /f = /hv27/12f. In other words, this wavelength increases
with the panel thickness. Thus, for a given panel size, the deviation of the experimental
from the calculated is expected to increase with increasing panel thickness. This is
indeed found to be the case.

A complete analysis of transmission should include the normal modes of the panel
and the coupling of these modes with the modes of the sound fields in rooms on the
two sides of the panel (see Section 4.3.3). The effect of panel modes, not accounted
for here, become important when the size of the panel is of the order or smaller than
the wavelength of the bending wave on the panel.

Another reason for a difference between measured and calculated values involves
the assumption of a diffuse sound field. In practice, the sound field in the test rooms
used in the measurement of transmission loss is not completely diffuse, and the degree
of diffusivity varies from one laboratory to the next and corresponding variations in
the measured transmission loss are to be expected.

The set of curves on the right in Fig. 4.10 are ‘universal’ in the sense that TL is
now shown as a function of the normalized frequency f/f.. As already explained in
connection with Eq. 4.90, the transmission loss then becomes independent of the
thickness of the panel and depends only on the material. Thus, there will be one set
of curves for glass, another for aluminum, etc.

Normally, in most discussions and data on TL, only the diffuse field or the normal
incidence value is given. However, in many practical situations, the panel is not
exposed to a wave of normal incidence or a diffuse field and neither of these TL
values is representative. The difference is not trivial; the TL at an angle of incidence
of 80 degrees can readily be 20 dB below the normal incidence value. For example,
for traffic noise through windows in a high rise building beside a highway, the noise
level inside is often found to increase with the elevation above ground despite the
increased distance to the noise source.”

"I believe this angular dependence of the TL is probably responsible for the effect which I have noticed
on several occasions sitting in the Hayden Library at M.I.T. The Memorial Drive runs along the library and
the peak value of the noise from a passing car transmitted through the windows reaches a maximum value
when the noise is incident at some oblique angle and not at normal incidence. This is particularly true on
a rainy day when the wet pavement seems to make the tire noise rich in relatively high frequencies. This
proposed explanation does not account for the possible directional characteristics of the noise, however.
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4.3.3 Measurement of Transmission Loss

In the two-room method of measurement of the transmission loss, the partition to be
measured is inserted in to an opening of the (heavy) wall that separates two reverberant
rooms. The linear dimensions of the rooms should be atleast two or three wavelengths
at the lowest frequency involved in the test. Normally, the measurement is carried
out in third octave bands, the lowest being at 100 Hz at which the wavelength is ~ 11
feet. The wall between the two rooms should have a considerably larger transmission
loss than the partition to be tested and often is a double concrete wall with an air
space separation. The size of the opening typically is approximately 10°x 10",

The rooms should be highly reverberant, so that the sound fields in the rooms
can be assumed to be diffuse (there are prescribed tests to check the diffuseness
in the rooms). One of the rooms contain one or more sound sources, normally
loudspeakers driven by a random noise generator and power amplifiers. The spatial
average rms values p1 and ps of the sound pressures in the two rooms are measured.
The acoustic intensity that strikes the test panelis 1 = C|p1 |2, where C is a constant,
and the acoustic power that goes through the test panel is Wi = 711 S, where 7 is the
transmission coefficient and S the area of the panel.

The transmitted power establishes a sound field in the receiving room which in
steady state is such that the absorbed power in the room is equal to Wy. The spatial
average of the corresponding steady state sound rms sound pressure in the receiving
room is ps, which is measured. By expressing the absorbed power in terms of ps
and equating this power with that transmitted through the wall, the transmission loss
can be expressed in terms of the sound pressure levels in the two rooms, as given by
Eq. 6.14.

The two-room method is based on the assumption of diffuse fields in the source and
receiver room. This cannot be fulfilled at low frequencies where only a few acoustic
modes are excited in the rooms (see Chapter 6). At these frequencies the method
yield large fluctuations in the measured transmission loss. For this reason, typical
laboratories limit the frequency range to frequencies above 125 Hz.

Other Methods

The diffuse field transmission loss obtained in the standard two-room method test
procedure yields the steady state value of the transmission loss for a diffuse sound
field. The question is whether this is the relevant quantity in most cases. Sounds are
generally a succession of pulses that strike the wall at some angle of incidence and the
transmission is determined by the transmission coefficient for this particular angle of
incidence. Furthermore, if the pulses are short compared to the reverberation time
in the receiving room, it is not the reverberant level that is relevant but the direct
sound transmitted through the panel. Under such conditions, the pulse transmission
loss rather than the diffuse field average should be determined. Actually, such a
measurement would not need a two reverberant room test facility but could be carried
out anywhere with special precautions to avoid interfering reflections.

In many applications, particularly in regard to sound transmission through win-
dows, the incident sound typically is traffic noise and the field is not at all diffuse or
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reverberant. Also in such a case, it appears that data on the angular dependence of
the transmission loss for an incident wave is more relevant than the diffuse field value.

At least in principle, the angular dependence of the transmission loss can be de-
termined by measuring, with an intensity probe (see Section 3.2.3), the incident and
transmitted intensities as a function of the angle of incidence. The effect of reflections
from walls and other objects are reduced by the directivity of the intensity probe.

An alternate way of measuring transmission loss is to apply the time delay spectrom-
etry, TDS. This technique utilizes a sound source that sweeps through the frequency
range at a rate that can be adjusted. The signal is received through a tracking filter
which can be delayed in time with respect to the source. The bandwidth of the filter
can be varied. If the delay is set to correspond to a certain travel path of the sound
from the source to the receiver, only that signal is ideally measured. A signal that was
emitted at an earlier time and reflected from some object has a different frequency
so that when it arrives at the receiver, the filter rejects this signal.

Like the two-room method, these two alternate methods are not good at low fre-
quencies where diffraction about the panel causes problems, particularly at large
angles of incidence. The advantage with the methods is that they can be carried out
anywhere without the need for a special laboratory.

4.3.4 Problems

1. The diffuse field transmission loss
Carry out the integration in Eq. 4.78 to prove the expressions for the diffuse field
transmission coefficient in Eq. 4.79 and the corresponding transmission loss in Eq. 4.80.
2. Transmission into steel from air
(a) Determine the power transmission coefficient and the corresponding transmission
loss for sound transmitted from air into an infinite layer of steel from air and from steel
into air.
(b) For transmission through a layer of finite thickness (plate) there are two interfaces.
Explain qualitatively why the transmission loss in this case cannot be expected to be
twice the value for one interface.

4.4 Transmission Matrices

4.41 The Acoustic ‘Barrier’

The complex amplitude description of acoustic field variables makes possible the
introduction of transmission matrices which provide a unified procedure in analyzing
sound interaction with structures consisting of several components.

Let us consider sound transmission through a ‘barrier’ illustrated schematically in
Fig. 4.11, be it a single or composite wall of several elements, such as air or porous
layers, perforated plates, membranes, and screens.

The complex amplitudes of sound pressure and fluid velocity components in the
x-direction at the front side of the barrier are p; (@) and u] (@) and the corresponding
quantities on the other side are ps(w) and uz(w). It should be realized that when a
sound wave is incident on the barrier, the quantities p; and u1 are the sums of the
contributions from the pressures and velocities in the incident and reflected waves.
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Figure 4.11: An acoustic barrier can be a combination of any number of elements. In this
case four different layers are sandwiched between two panels.

If the system is linear, each of the variables at station 1 is a linear combination of the
variables at station 2. In expressing this relationship, we shall use here the variable
pcu rather than u where pc is the wave impedance of standard air; pcu has the same
dimension as p. In the following discussion, the argument (w) will be omitted to
simplify the writing somewhat; thus p will stand for p(w), the complex amplitude of
sound pressure. Thus, we express the linear relationship between the variables on
the two sides of the barrier as

p1 = T ps + Thapcus
pcuy = Tagpo + Toy pcus (4.92)

or, in matrix form,

Matrix relation for barrier (Fig. 4.11)
P1 _( Tn T D2 (4.93)
pcul Toy Too pcug

[p, u: Complex amplitudes of pressure and velocity. T;;: Transmission matrix ele-
ments of barrier].

With our choice of variables, the elements are dimensionless.

The sound pressure p; in front of the barrier is the sum of the incident and the
reflected pressures, p; and p,, and, likewise, the velocity is the sum of the incident
and reflected wave contributions, pcu; and pcu,. The complex amplitude of the
incident wave is |p;| exp(ikx) and the reflected wave is R, |p,| exp(—kx), where R
is the pressure reflection coefficient. The relations between pressure and velocity in
the incident and reflected waves are p; = pcu; and p, = —pcu, (see Eq. 3.23).

If there are no reflections in the region behind the barrier, there will be a single
transmitted plane, so that ps/pcus = 1, the normalized impedance at the back of
the barrier being ¢=1. Then, with p; = p; + p, and u1 = u; + u, and by adding the
two equations in Eq. 4.92, the terms involving pcu; cancel each other, and we get

pi = pa(Ti1 + Tz + Tee + To1)/2. (4.94)
The corresponding transmission loss, as defined earlier, is then

TL =10 log(|pi/pal* = 10 log(IT11 + Tha + Taz + Ta1*/4). (4.95)
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This is a general expression for the transmission loss of the barrier for a sound wave
at normal incidence. It is valid for any barrier. We shall apply it shortly to a limp wall
for comparison with the result obtained earlier in Eq. 4.77.

Multiple Elements

Let us consider two barriers in series (cascade) with the matrix elements U;; and V;;
and label the variables at the beginning and end of these elements by the indices 1,

2, and 3. Then
D2 Vi Viz D3
= 4.96
< pcus ) ( Vo1 Voo >< pcus ) ( )

P1 Un U D2
= . 497
( pcug ) ( Ua1 U )( pcug ) ( )

Combining the two yields
41 T T D3
= , 4.98
( pcul ) ( Tor Too >< pcus ) ( )

( T T >=< U Ui >( Vit Vi > (4.99)
Tor Tao Ua1 Uz Vor Vao )7 '
The matrix elements of the total matrix T for the combination of the two elements
is then obtained by multiplying the matrices U and V, i.e., T11 = U1 V11 + U2 Vo,
etc.
In this manner, the total transmission matrix for any number of elements in cascade

can be calculated. Numerically, the matrix multiplication is conveniently done by
means of a computer routine.

and

where

4.4.2 Acoustic Impedance

The input impedance of the barrier is the simplest of all quantities to determine.
It follows directly by dividing the two relations in Eq. 4.92 and we obtain, for the
normalized input impedance,

1 Tnge+Te

= = (4.100)
pcuy T80+ Toz

&i

{2 = pa/pcus.
Of particular interest is the case when the barrier is backed by a rigid wall in which
case ¢ = 00 and

¢ = T/ Tar. (4.101)
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4.4.3 Reflection Coefficient

Other quantities can be expressed in a similar manner and we consider now the
pressure reflection coefficient R,. In terms of it, we have p, = R,p;. Dividing
the equations in Eq. 4.92 with each other yields 1 + R,)/(1 — Rp) = [T1ip2 +
Tiopcurl/[Ta2p2 + To1 pcus] or

T +Tig — To182 — Tag

b, = : (4.102)
(T11¢2 + Ti2 + To182 + T2

If there is free field on the backside of the barrier, we have py = pcus, ie.,
{2 = pa/pcug = 1.

4.4.4 Absorption Coefficient

The absorption coefficient can be expressed in terms of the impedance and the re-
flection coefficient as we have done earlier

R=(@@-D/G+D
a=1—|RI?=46;/((1+6)%+ xP), (4.103)

where & = 0; +iy;.

If the absorption coefficient is meant to express the power absorbed within the
barrier (not counting the power in the transmitted wave), the expression in Eq. 4.103
is valid only if the barrier is backed by a rigid wall. Otherwise the power carried by
the transmitted wave has to be subtracted. This correction is left for Problem 3.

4.4.5 Examples of Matrices
Limp Panel

Asafirstelement, we consider the limp wall, for which we have already determined the
transmission loss without the use of a transmission matrix (see Eq. 4.77). The mass
per unit area of the wall is m and the frequency of the incident wave is w. If the
complex pressure amplitudes on the front and the back of the wall are p; and ps, the
driving force on the wall per unit area is p1 — ps and it follows from Newton’s law
that p1 — ps = (—iw)m u (remember that 8/3t — —iw). The velocity of the wall is
the same as the velocity of the air both on the front and on the back side of the panel,
i.e., u = us. The equation of motion can then be written

p1 = p2 + (—iwom)uz = T11 p2 + Tiapcus
pcuy = pcug = Toapa + To1pcus. (4.104)

In other words, the transmission matrix elements of the limp wall are T7; = 1,
Tig = —iwm/pc, Tog = 0, To1 = 1. The corresponding matrix is

(1 —iwm/pc
T= ( 0 1 ) (4.105)
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Limp, Resistive Screen

Since an acoustical analysis deals with first order perturbations, the absolute velocity
amplitude u1 in front of the screen is equal to the velocity amplitude us on the other
side.8

The added feature in this problem, as compared to the limp plate, is that the screen
is pervious so that the velocity of the screen is not the same as the velocity of the air at
the screen. The sound pressure amplitudes on the front and back sides of the screen
are p1 and po, and velocity amplitude of the screen is u’. The mass per unit area
of the screen is m and we assume that any stiffness reactance of the screen can be
neglected (frequency higher than the resonance frequency of the screen element).
Furthermore, we assume that the screen is not in contact with any other structure,
such as a flexible porous layer (i.e., it has air on both sides). Under these conditions
it follows from the definition of the interaction impedance z = pc¢ that

p1— p2 =z(ug —u') (4.106)
—iomu’ = z(ug — u’). (4.107)
For a purely resistive screen with a flow resistance r, we have z = r = pcf. Usually,

this assumption is Satisfactory.
It follows from Egs. 4.106 and 4.107

u' = usz/(z — iom) (4.108)
and
p1 = po+ ¢ peus, (4.109)
where
¢ =t¢/[1+itpc/om] (4.110)

is the equivalent screen impedance in which the acoustically induced motion of the
screen is accounted for. With u1 = uy the linear relation between p1, u; and ps, us
then can be expressed as

P1 (1 ¢ P2
(e )=Co 1) (0i ) i)

Air Column. Loss-Free Tube

We consider next an air layer of length L. The general expression for a plane wave
pressure field in the layer

p(x, ) = Ae'®* + Be ik, (4.112)

where k = w/c and A and B are complex constants.

8Rigorously, it is the mass flux that is continuous, but the difference in the density on the two sides of
the screen in the absence of a mean flow is of first order, and, from conservation of mass flux, it follows
that the difference in the velocities will be of second order.
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The corresponding velocity field is obtained from the equation of motion —iwpu =
—ap/dx, . .
ux, w) = (1/pc)(Ae’t* — Be i)y, (4.113)

We now wish to relate the values of the field variable pair at the beginning and the
end of the duct, p1, u1 and ps, us, respectively To do this, we express A and B in
terms of ps and ug, and by placing x = 0 at the end of the duct (and x = —L at the
beginning), we get

A+ B =p2
A — B = pcuy (4.114)

sothat A = (pa + pcus)/2 and B = (p2 — pcus)/2.
Using these values in Egs. 4.112 and 4.113, we get

p1 = cos(kL)pa —isin(kL)pcus
pcuy = —isin(kL) pa + cos(kL)pcus (4.115)

and the corresponding transmission matrix

_ ([ cos(kL) —i sin(kL)
r= ( —isin(kL) cos(kL) ) ’ (4.116)

where k = w/c = 27 /) and L is the layer thickness.

It there is a mean flow in the pipe with a velocity U, the wave speeds in the positive
and negative x-directions will be ¢ + U and ¢ — U and the corresponding propagation
constants are then ky = w/(c + U) = k/(1 + M) and k_ = k/(1 — M), where
M = U/c is the flow Mach number. It is left for one of the problems to show that
the transmission matrix in Eq. 4.116 will be modified to

o cos(k’'L’y  —isin(k'L’)
T=e ( —isin(k’L")  cos(k’L") ’ (4.117)

where ® = —kLM/(1 — M?), k' = k/(1 — M?), and k = w/c (see Problem 5).

4.4.6 Choice of Variables and the Matrix Determinant

The use of matrices in the present context is analogous to the treatment of linear
networks in electrical engineering. In most cases, we shall deal with 2x2 matrices,
which correspond to four-pole networks with two input terminals and two output
terminals (Fig. 4.12). We shall deal only with passive systems, i.e., systems in which
there are no sources of current or voltage within the network so that the values of the
output variables depend only on the values of the input variables.

For a linear electrical four-pole network we then have the following relations

Vi=AnVa+ Apls
I = A1 Vo + Agals, (4.118)
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Figure 4.12: Electric four-pole and its equivalent T-network.

where (V1, I1) and (Va, I5) are the input and output values of voltage and current
and A;; the elements of the (transmission) matrix of the network.

In order for the network to be passive, we must have I; = 0 if V1 = 0 so that
Vo/lp = —Aja/A11 = —Agz/Ag) or

A11Age — ApAg) = 1. (4.119)

In other words, the four matrix elements are not independent but must be such
that the determinant of the matrix is unity.

This condition imposed on the matrix elements can also be seen if we recall that
the most general four-pole can be represented in terms of a “T-network,” shown
in Fig. 4.12, with three independent impedances Z1, Zs, and Z3. If we express
the relations between Vi, I and Vs, Io in this network and express the four matrix
elements 7;; in terms of the impedances, we again find the relation in Eq. 4.119.

In an acoustical circuit, the variables which correspond to voltage and current can
be sound pressure p and the volume flow rate ¢, i.e., the product of velocity and
cross-sectional area of the acoustical element involved. With this choice, g, like the
electrical current, will be continuous across a discontinuity in a cross-sectional area.
The determinant of an acoustical “circuit’ matrix then will be unity.

However, if velocity u rather than volume flow rate is chosen as a variable, the
determinant of the matrix will not be unity but rather As/A1, where A; and Ay are
the input and exit areas of the acoustical circuit. Despite this lack of elegance, we
shall use p and u (rather than g) as the acoustical variables. In in cases where there
are no changes in cross-sectional area, the determinant will be unity even with this
choice.

Actually, it is convenient to use the velocity variable pcu, as we have done, where
pc is the wave impedance at of the fluid involved under normal conditions

p1 = Tiips + Thepcus
pcuy = To1 po + Taopcus. (4.120)

With this choice, the matrix elements 7;; become dimensionless and we shall use
this choice unless stated otherwise.

4.4.7 Problems

1. Matrices at oblique angle of incidence
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The transmission matrices given in Section 4.4.5 all referred to normal incidence. Wher-
ever applicable, generalize these matrices when the angle of incidence is ¢.

. Transmission loss of double wall

A wall consists of two 1/8 inch glass plates separated by 4 inches. Treat the plates as
limp.

(a) What is the total normal incidence transmission matrix of this double wall?

(b) Calculate the transmission loss and sketch the frequency dependence. For the mass
density of glass, use pp = 2.5 g/em?>.

. Absorption within a barrier

Derive an expression (in terms of the transmission matrix elements) for the absorption
coefficient of a barrier, accounting only for the absorption within the barrier, i.e., not
accounting for the power transmitted through the barrier.

. Absorption coefficient of a double sheet absorber

An absorber consists of two rigid resistive sheets separated by 2 inches and backed by
a 4 inch air layer in front of a rigid wall. The normalized flow resistances of the sheets
are 01 = 1 and fp = 2, the latter being closest to the wall (i.e., 4 inches from the wall).
(a) What is the combined transmission matrix of the two sheets and the air layer?

(b) Calculate the normal incidence absorption coefficient.

(c) If the placement of the two sheets are interchanged, will that influence the absorption
coefficient?

. Transmission matrix for an air column

Following the outline in the text, prove Eq. 4.117.



Chapter 5

The Wave Equation

5.1 Fluid Equations

In the introductory discussion in Chapter 3 we simply used the impulse-momentum
relation to illustrate the basic idea involved in the dynamics of wave motion. To
go further, the differential equations of fluid motion are more appropriate and we
proceed accordingly.

The thermodynamic state of a fluid is described by three variables, such as pressure,
density, and temperature and the motion by the three components of velocity. Thus,
there is a total of six variables which have to be determined as functions of space
and time to solve a problem of fluid motion. Therefore, six equations are needed.
They are conservation of mass (one equation), conservation of momentum (three
equations, one for each component), conservation of energy (one equation), and one
equation of state for the fluid.

In describing the motion of a fluid, we shall use what is known as the Eulerian
description. The velocity and the thermodynamic state (such as pressure) at a fixed
position of observation are then recorded as functions of time. Different fluid par-
ticles pass the observer as time goes on. (In the Lagrangian description, the time
dependence is expressed in a coordinate frame that moves and stays with the fluid
element under consideration.)

5.1.1 Conservation Laws

The conservation of mass in the Eulerian description simply states that the net mass
influx into a control volume, fixed with respect to the laboratory coordinate frame,
must be balanced by the time rate of change of the mass within the volume. We
consider first one-dimensional motion in the x-direction and let the velocity and
density at x and time f be u(x, 7) and p(x, 1).

The mass flux j(x,t) = p(x, t)u(x,t) is the mass passing through unit area per
unit time at x. Similarly, the efflux at x + Ax is obtained by replacing x by x + Ax in j.
Thus, the net mass influx to the control volume is j(x) — j(x + Ax) = —99j/0x) Ax
in the limit as Ax — 0.

149
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Conservation of mass requires that the influx of mass must be balanced by the time
rate of change of the mass pAx in the control volume. and we obtain

dp/0t = —3j/dx or 0p/dt+ pdu/dx = 0. (5.1)

In the last step, the term udp/dx has been neglected in 9;j/dx since it is much
smaller (by a factor u/c) than pdu/9x. This follows, for example, if we express dp/dx
as pkdp/dx, where k = 1/pc? is the compressibility, discussed in Chapter 3. In a
plane wave, u = p/pc so that du/dx = (1/pc)dp/dx. The ratio of the neglected
term udp/dx and dp/dx is then seen to be of the order of u/c. The neglected term
is of second order in the field variables (product of two first order perturbations) and
the omission results in the linearized version of the equation.

To obtain the corresponding equation for conservation of momentum, we proceed in
an analogous manner, replacing the mass flux by the momentum flux. The momentum
density in the fluid is pu and the influx into the control volume at x is G = (pu)u. The
corresponding efflux at the other side of the boxis G(x + Ax) = G(x) + (3G /dx) Ax,
making the net influx equal to —(8G/dx)Ax.

There is a contribution also from the thermal motion which is expressed by the
pressure in the fluid (recall that the pressure is of the order of pc® which should
be compared with the convective momentum flux pu?). This results in a rate of
momentum influx p(x) at x and an efflux p(x + Ax) = p(x) + (p/9x)Ax at x + Ax,
making the net influx contribution from pressure (—9p/dx) Ax.

The total influx is now (—dp/dx — dG/dx) Ax and this must equal the time rate of
change of the momentum (dpu/dt) Ax contained in the box, i.e.,

pdu/dt = —dpu’/dx — dp/ox. (5.2)

From an argument analogous to that used in the linearization of the conservation
of mass equation, we find that the term dpu®/dx = 3G /dx can be neglected in
comparison with dp/dx (in Chapter 10 on nonlinear aspects of acoustics it is retained)
and that dpu /9t can be replaced by pdu/dz.

Thus, the linearized form of the momentum equation is

pdu/dt 4+ dp/dx = 0. (5.3)

It is left as a problem to show that the omitted (nonlinear) terms are smaller than
the linear by a factor of the order of u/c which normally is much less than one.

The momentum equation (5.3) contains the variables u and p and the mass equation
(5.1) the variables p and u. The latter can also be expressed in terms of p and u since
dp/ot = (1/c¢%)dp/dt (recall that ¢ = dP/dp = y P/p).

Then, in terms of the compressibility x = 1/ pc2, the linearized form of Eq. 5.1
can be written

kdp/ot + du/dx = 0. (5.4)

The fluid equations 5.1 and 5.3 can readily be generalized to three dimensions. In
the mass equation, the term du/dx has to be replaced by du, /9x + du,, /9y + 0u;/dz
which can also be expressed as divu.
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The momentum equations for the three components of the velocity can be con-
densed into a vector equation in which grad p = ¥dp/dx + ydp/dy +23p/9z, where
X, ¥, Z are the unit vectors in the x, y, z directions. Thus, the linearized fluid equa-
tions take the form

Acoustic equations
Kk dp/ot = —divu (5.5)
pdu/dt = —grad p

where we have introduced the compressibility « = 1/pc2.
For harmonic time dependence, the corresponding equations for the complex
amplitudes p(w) and u(w) are, with 3/9t — —iw,
iwk p =divu (5.6)
iwpu = grad p. (5.7)

5.1.2 The Wave Equation

From Egs. 5.1 and 5.3, we can eliminate u by differentiating the first with respect to
t and the second with respect to x to obtain a single equation for p,

32p/ax> — (1/c)d%p/ar® = 0. (5.8)

In three dimensions, we differentiate the mass equation (5.5) with respect to t and
take the divergence of the momentum equation (5.5). Then, with divgrad p = V2p,
it follows that

Acoustic wave equation

V2p — (1/¢2)d%p /01 = 0 (5.9)

which replaces Eq. 5.8. For harmonic time dependence this equation reduces to

V2p(1) + (w/c)?p(t) = 0. (5.10)

Plane Waves

The general solution to the one-dimensional wave equation is a linear combination
of waves traveling in the positive and negative x-direction, respectively, and can be
expressed as

p(x,t) = pi(t —x/c)+ p-(t +x/c), (5.11)

where p; and p_ are two independent functions. The validity of the solution is
checked by direct insertion of this expression into Eq. 5.8.
For harmonic time dependence,

p(x,t) = Acos(wt — kx — ¢1) + B cos(wt + kx — ¢2), (5.12)

where A, B, ¢1, and ¢ are constants.
It follows from Egs. 5.6 and 5.7 by eliminating u that the wave equation is valid
also for the complex amplitude p(w),

V2 p(w) + (w/c)’ p(w) = 0. (5.13)
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The general one-dimensional solution is then

Complex pressure amplitude. Plane wave solution

p(x, @) = Aelkx 4 Beikx (5.14)

representing the sum of waves traveling in the positive and negative x-directions. The
constants A and B are now complex, defining the magnitude and phase angles of the
two waves. They are determined by the known complex amplitudes at two positions
(boundary conditions).

The corresponding velocity field follows from the momentum equation (5.7) and
is given by

Complex velocity amplitude. Plane wave solution

pcu(x,w) = Aetkx _ B p—ikx (5.15)

[pc: Wave impedance. A, B: Complex constants. w: Angular frequency. k = w/c.]

The sum of several traveling waves of the same frequency, direction, and wave
speed can always be represented as a single traveling wave. The complex amplitude
of this wave is then the sum of the complex amplitudes of the individual waves.

Spherical Waves

So far we have been dealing with plane waves, such as encountered in a duct with
rigid walls with a plane piston as a sound source. The next simplest wave is the
spherically symmetrical. Such a wave, like the plane wave, depends only on one
spatial coordinate, in this case the radius.

The prototype source of the spherically symmetrical wave is a pulsating sphere
which takes the place of the plane piston for plane waves. At large distances from the
source, a spherical wave front can be approximated locally as plane, and the relation
between pressure and velocity is then expected to be the same as for the plane wave,
i.e., p = pcu, sothat the intensity becomes I = (1/2) p?/pc. The total emitted power
from the source is then I1 = 47721, and it follows that the intensity decreases with
distance as 1/r2 and the pressure as 1/r. As will be shown below, this r-dependence
of the pressure turns out to be valid for all values of r.

To proceed, we need to express the wave equation in terms of the radial coordi-
nate r. To do that, we recall that if A is a vector, the physical meaning of div A is the
‘vield” of A per unit volume, where the yield is the integral of the (outward) normal
component of A over the surface surrounding the volume. Our volume element in this
caseis S(r) dr where S(r) is the spherical surface S(r) = 477 r2. The outflow of A from
this volume element is (SA;)r+4r — (SA;), = 3(SA,)/dr dr and dividing it by the
volume S dr we get the divergence, divA = (1/8)(3S/dA,) = (1/r?) d(r?A,)/dr.

In this case, with A, = dp/dr and VZp = div (grad p), we obtain the wave equation

Wave equation; spherically symmetric pressure field
10 [,z 8_1)} L& _ : (5.16)

r2 or or c2 912 -
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By direct insertion into the equation, we find that the solution for the pressure in
an outgoing wave can be written in the form

o) =< pla,t —1'), (5.17)
r

where p(a, t) is the pressure at r = a and t' = (r — a)/c is the delay time of wave
travel froma tor.
For harmonic time dependence, with p(a, 1) = |p(a)| cos(wt), we get

p(r 1) = |p(a)|c7l coslwt — k(r — a)]. (5.18)

The velocity field follows from pdu,/dt = —9p/dr. In the case of harmonic time
dependence such that p(a, 1) = |p(a)| cos(wt) the velocity field becomes

u(r,t) = ;'ij(—jﬂ [cos[wt —k(r —a)]+ % sin[(wt — k(r — a)]:| . (5.19)

The first term represents the far field and dominates at distances many wavelengths
from the source, i.e., kr >> 1, where k = 27/A. Itis in phase with the pressure field
and is simply p(r, r)/pc. The second is the near field which dominates for kr << 1.
With sin[wt — k(r — a)] written as cos[wr — k(r — a) — /2], we see that this velocity
lags behind the pressure by the phase angle 7 /2.

The complex amplitudes of pressure and velocity that correspond to Egs. 5.18 and
5.19 are

Complex pressure and velocity amplitudes; spherical wave
p(r,w) = (A/r) e (5.20)
pcu,(r,w) = (A/r)e* (1 +i/kr)

[k =w/c. A= (p(a, waexp(—ika)].

The complex velocity amplitude in this case is obtained from momentum equation
—iwp u,(r,w) = —ap/or.

The constant A is now complex and incorporates a phase factor exp(—ika). In
Section 5.1.2 we return to this problem in an analysis of the sound generated by a
pulsating sphere in which case the velocity at the surface of the sphere rather than
the pressure is given.

To obtain the complex amplitudes for an incoming rather than outgoing wave, we
merely replace ikr by —ikr in Eq. 5.20.

5.1.3 Problems

1. Linearization
Show that the omitted terms in the linearization of the momentum equation (5.3) are
of the order of u/c, where u is the particle velocity.

2. Sound radiation; pulsating sphere
The surface of a sphere of mean radius a = 5 cm oscillates in radial harmonic motion with
the frequency 1000 Hz and with a uniform velocity amplitude 0.1 cm. Neglecting sound
absorption in the air, determine the distance at which the sound pressure amplitude will
be equal to the threshold of human hearing (0.0002 dyne/ em?, rms).
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3. Sound field in a spherical enclosure
A pulsating sphere of mean radius a is surrounded by a concentric spherical enclosure
of radius b and with totally reflecting walls. The radial velocity of the pulsating sphere
is uy = |u| cos(wt).
(a) Determine the pressure and velocity fields in the enclosure.
(b) What is the impedance at the source?

5.2 Pulsating Sphere as a Sound Source

The spherically symmetrical wave, like the plane wave, is one-dimensional in the
sense that it depends only on one space coordinate, the radius r. Next to the plane
wave, it is the simplest wave form and next to the plane piston in a tube, the pulsating
sphere in free field is the simplest source, being the prototype generator of a spherical
wave.

There is a significant difference between the plane piston and the pulsating sphere
as sound sources, however. For the plane piston in a tube, compressibility of the fluid
was a necessary requirement for motion of the piston.

For a spherical source, this is not necessary, as will be shown shortly. Even if the
surrounding fluid is incompressible, the reaction force on the sphere from the fluid
will not be infinite, as was the case for the piston, and a finite driving force per unit
area of the sphere can indeed produce an oscillatory velocity field in the fluid.

This can be shown as follows. Let the radius of the sphere be a, the radial ve-
locity of the surface of the sphere, u(a, t), and the density of the surrounding fluid,
p. With p being constant because of the incompressibility, conservation of mass,
pu(r, t)(4wr?) = pu(a, t)(dma?), requires the velocity at radius r to be inversely
proportional to 2,

u(r, 1) = (a/r)?ua, 1). (5.21)

The total kinetic energy of the fluid is then
o
KE = (p/2) / u>(r, 1) r?)dr = (pa)(dma®) u’(a, 1))2. (5.22)

Thus, the kinetic energy per unit area of the sphere is pa u?/2 corresponding to a
mass load of pa per unit area of the sphere.

With such a mass load on the sphere and a radial velocity of the surface being
u(a, t) = |u| cos(wt), the pressure at the surface will be

d )
pla,t) = pa MEZ 2 = —paw |u| sin(wt) (incompressible flow). (5.23)

If the fluid is compressible, the motion generated by the pulsating sphere no longer
is limited to the velocity which varies as 1/ rZ (near field), but it is expected to contain
a spherical sound wave in which the velocity varies as 1/r (far field). The reason is
that sufficiently far from the sphere at a radial position r >> a, the wave front can
be approximated locally as a plane wave. The acoustic intensity in the wave is then
1(r,t) = p2(r,1)/pc and the power (4nr?)I(r, ). Conservation of acoustic energy
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Radiation impedance

ka

Figure 5.1: The radiation resistance 6 and the magnitude of the mass reactance |x of the
normalized radiation impedance of a pulsating sphere of radius a versus ka = 2wa/x.

then requires the intensity to decrease as 1/ rZ and, consequently, the sound pressure
as 1/r.
To calculate the total sound field for all values of r, we shall use the complex am-
plitude approach. The analysis without complex variables is discussed in Chapter 11.
The complex pressure amplitude is expressed as

A .
p(r,0) = =€k, (5.24)
r

representing an outgoing spherical wave, where k = w/c. The (complex) amplitude
A(w) is to be determined from the boundary condition on velocity at the surface of
the sphere.

The corresponding velocity field is obtained from —ipwu, = —dp/dr,

ikr

(1+i/kr). (5.25)

U = —

pc r

The radiation impedance of the sphere is then z = p(a)/u,(a) or

Radiation impedance. Pulsating sphere
= iy — _ ; 1 (ka)® . ka (5.26)
(=0tix=z/pc =M+ i/kal™ = T gep ~ I Tia?

[a: Sphere radius. k = w/c].

The frequency dependence of the real and imaginary parts 6 and x are shown in
Fig. 5.1 versus ka.

The negative value of the reactance (signified by the factor —i) shows that the re-
actance is mass like and for small values of ka (acoustically compact sphere), the
corresponding mass load, the induced mass per unit area is pcka = wpa, i.e., the
mass reactance of an air layer of thickness a, as already noticed in connection with
Eq. 5.23.

As ka increases, the radiation resistance approaches 1, and the reactance goes to 0,
and the radiation impedance is the same as for a plane plane piston generating a plane
wave.
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At low frequencies, ka << 1, the radiation resistance is small, ~ (ka)?, which
means that the pulsating sphere is an inefficient radiator at low frequencies. The
mass reactance has a maximum magnitude, 0.5, for ka = 1, the wavelength being 7
times the diameter of the sphere. The normalized radiation resistance is then also 0.5.

Finally, we use Eq. 5.25 to express A in terms of the radial velocity U of the sphere.
Thus, with r = a, we get A = pcU exp(—ika)a/[1 + i/(ka)] and if this is used in
Eq. 5.24, we find, using p(a) = pct, U,

; k
p(r,w) = ,ocUi—le’k(r_a) ka—j-i' (5.27)

The time dependence of the pressure is then obtained as R{p(r/w) exp(—iwt)}.
The radiated time average power in the case of harmonic motion can be expressed as

1 = (dna®)(1/2)R{p(a)u(a)*} = (1/2)(4ma®)|U|*0pc). (5.28)
The factor 1/2 should be removed if |U| is the rms value.

5.21 The Point Source. Monopole

The radius of the pulsating sphere can be chosen as small as we wish but if the velocity
amplitude is kept constant as the radius of the sphere goes to zero the radiated sound
pressure will also go to zero. According to Eq. 5.27, the sound pressure amplitude as
ka — 0 will be

—iwpU 4ma® kD)
4

We now let the U — oo as @ — 0 in such a way that the total mass flow amplitude

pU4ma® of the sphere remains constant and we refer to such a source as a point

source or an acoustic monopole. Because of the factor —iw, the sound pressure is
proportional to the acceleration of the total mass flow

p(r,w) ~ —i(pcU ka®)/r &k = (5.29)

q = (—iw)(pU 47a?). (5.30)

It is the acoustic source strength of the point source. The mass flow rate itself will
be called the flow strength of a source

qr =pU dra®. (5.31)

In terms of the acoustic source strength, the sound pressure field is simply

p(r,w) = Leikr, (5.32)
dmr
where g(w) = p(—iwU)4ma® and (—iwU) is the radial acceleration of the surface
of the sphere.
For an arbitrary time dependence of acoustic point source, the sound pressure
becomes ( )
t —
Py = 1119 (5.33)
4y

where g = dq /0t = g7.
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Acoustically Compact Source

The field from an arbitrarily shaped sound source can be expressed as the superposi-
tion of point sources. If the size of the source is much smaller than the wavelength, it
is called an acoustically compact source. In the far field, it is a good approximation to
treat the source as a point source with a source strength equal to the time derivative
of the total flow strength of the source. The surface velocity of the source need not
be uniform and the flow strength is obtained as the integral of pu(w) over the surface
of the source. The sound in the near field, close to the source, may be quite com-
plicated and different from that of the point source but the spherically symmetrical
component and the far field is determined solely by the source strength.

As an example, consider a loudspeaker mounted in one wall of a closed cabinet
(box). Only the loudspeaker contributes to the flow strength since the velocity of
the cabinet walls can be assumed to be zero. At wavelengths large compared to the
cabinet dimensions, the source can be regarded as acoustically compact.

If the cabinet is removed and the loudspeaker is suspended in free field, the flow
strength will be zero since it is positive on one side of the loudspeaker and negative
on the other. Thus, with the source strength being zero, there will be no spherically
symmetrical component of the sound field. As a result, the radiation efficiency at low
frequencies will be reduced. An important function of a loudspeaker cabinet is to
improve the low frequency radiation efficiency.

Like the Fourier decomposition of a periodic signal in Chapter 2, the angular
dependence of the sound field of any harmonic source can be decomposed into a series
of spherical harmonics of which the leading term is the spherically symmetrical field
(no angular dependence). It can be shown that this field (if it is present) dominates
for large values of r and at low frequencies.

For abroad band noise source, it should be borne in mind that in the high frequency
end of the spectrum, the wavelength might not be large compared to the source
dimensions so that in this regime, the source no longer can be considered acoustically
compact. In that case, a more detailed analysis has to be carried out as illustrated by
the line source example presented later in this section.

5.2.2 Problems

1. Radiated power, once again
(a) Show that the radiated power from a pulsating sphere in Eq. 5.28 can be obtained
also by integrating the intensity in the far field.
(b) Determine the acoustic power radiated from a point source in terms of its acoustic
source strength .

2. Threshold values of intensity and power

As already indicated, the rms value of the sound pressure at the hearing threshold is
pr=2x 1077 N/m2.

(a) What is the corresponding value of the reference intensity /- in a plane wave and the
reference power W, power in watts transmitted through an area of 1 m? at a pressure
of 1 atm and a temperature of 70°F?

(b) How does the intensity vary with static pressure and temperature?
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(¢) Qualitatively, how does the sound pressure vary with altitude in the atmosphere in
a spherical sound wave generated at the ground levele Use conservation of acoustic
power.
(d) What is the acoustic power level PW L = 10log(W/W;) of a source emitting 1 watt
of acoustic power?

3. Spherical fields. Power level
Typical values for the total acoustic power emitted by a jet engine, a pneumatic hammer,
and an average speaker are 10 kilowatts, 1 watt, and 20 microwatts, respectively.
(a) What are the corresponding power levels?
(b) What are the sound pressure levels at 1 m from the sources, regarded as point
sources?
(c) With the opening of the mouth having an area of 3 cm?2, estimate the sound pressure
level at the surface of a sphere with the same surface area.

5.3 Source and Force Distributions

The pulsating sphere and the corresponding point source can be regarded as a
source of mass flow ¢ and the acoustic source strength, as we have defined it in
the previous section, is g (1) = (), and the corresponding complex amplitude is
q(w) = —iw q f(w). This source does not transfer any momentum to the surrounding
fluid (i.e., no net force is produced).

We consider now an acoustic source distribution Q = Q'f and force distribution
F, both per unit volume. The conservation laws of mass and momentum, Egs. 5.5
and 5.5, will be modified to

(1/c®@p/at) = —divu + Qf (5.34)
p(du/dt) = —gradp + F. (5.35)

The corresponding wave equation for p, obtained by eliminating the velocity (by
differentiating the mass equation with respect to ¢ and taking the divergence of the
second equation) is

VZp — (1)) (3%p/3t2) = —Q + div F. (5.36)

Here Q = 0Q /0t is the acoustic source strength per unit volume. The corre-
sponding equations for the complex amplitude are obtained by using /9t — —iw.

Let us consider first the field produced by Q. The pressure field from a single
point source has already been obtained (see Eq. 5.33).

Then, by considering the field contribution from a volume element dV’ as being
that of a point source of strength QdV’, it follows that the total field is

P, t) = / orrit) gy (5.37)

4|r — 1’|

Quantities r and r’ stand for the coordinates of the field and source locations,
respectively, and |r — r'| is the distance between these locations. The ‘retarded’ time
ist’ =t — |r — r’|/c which indicates that the sound pressure arriving at the point of
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observation r at time 7 was emitted at ¢’ from the source point, r’, [r — r’|/c being
the travel time.

To obtain the corresponding expression for the field from a force distribution F
per unit volume, we proceed as follows. Introduce the vector A such that p = div A.
Using this in the wave equation (5.36), we obtain the equatioml

VZA — (1/c*)(0%A4/3t>) = F. (5.38)

For each component of A, the equation has the same form as for the mass distri-
bution in Eq. 5.36, except for a difference in signs of Q and div F, and the solution is
analogous to Eq. 5.37. For the total vector A, the solution can be written (accounting
for the sign difference just mentioned)

A(r.1) = _f”r’—Mdv’. (5.39)

4|r — 1’|

After having calculated A, the corresponding pressure field is obtained from p(r, 1) =
div A.

5.3.1 Point Force (Dipole)

For a point force f, at the origin, we get

A, = _ S —r/o) (5.40)
4dmr
and
Point force ( d%'pole ) feld (541)
p(r,t) = %A — (1/dmr) [ fi(t) /e + fo(t))r] cos ¢ '

[t/ =r —r/c. fx = 0f,/0t. dfx/0x = (=1/c)(0fx/0t)cos¢p. Or/ox = x/
VxZ 4+ y2 4+ 722 = cos ¢].

The first term is the far-field sound pressure which is proportional to fx, and the
second term is the near field pressure, which is proportional to f,. We shall return
to this equation in the discussion of the sound field from an oscillating sphere. The
point source of sound is often referred to as a monopole and the point force as a dipole
source of sound. The monopole field has no angular dependence but the dipole field
is proportional to cos ¢ where ¢ is the angle between the direction of the force and the
direction to the field point. The sound pressure has a maxima along the direction of
the force, ¢ = 0, 7, and zero at the right angle thereto, i.e., at 0 = £ /2. (Compare
the electric field distribution about an oscillating electric charge in which this field
distribution is reversed.)

For harmonic time dependence, the complex pressure amplitude can be written

Point force. Complex pressure amplitude

p(r, ) = [exp(ikr) /4nr][—ik f(w) + f(w)/r]cos¢ (5.42)

Lif the divergences of two vectors are the same, the vectors are the same except for a possible curl of a
vector. In this case this difference is not relevant.



160 ACOUSTICS

where the factor first term is the far field pressure, proportional to the time rate of
change of the force, and the second, the near field.

The field produced by two monopole sources of equal strength but with opposite
signs clear has no net acoustic source strength and the resulting field has no monopole
contribution. If the separation of the sources is much smaller than a wavelength, the
dominant field will be equivalent to that of a point force. To prove this we put one
monopole at x” = —a, /2 with the complex amplitude of the acoustic source strength
g = —lq| and the other at x" = a, /2 with the source strength |g|. The field point is at
a distance r from the origin and an angle ¢ with respect to the x-axis. If r >> a,, the
distance r1 and ro from the two sources to the field point are r1 ~ r + (ay /2) cos ¢ and
ra =r — (ax/2) cos ¢. Thus, the complex amplitude of the sum of the contributions
from the two sources are

oL~ lq| exp(ikr) [—ef kax/Dcosd 4 =i (ax/Deosd] o (Zjoplglay) e
4rr 4rrc

cos ¢.
(5.43)

This should be compared with the field in Eq. 5.42 from a point force f; in the

x-direction
ikr

Px = (—ia)|fx|)4 cos . (5.44)
re

It follows that the two monopoles are equivalent to a point force with an amplitude
| fx| = lglay, often called the dipole moment.

If the complex pressure amplitudes of the monopole and dipole fields are denoted
po and p1, it follows from Eq. 5.43 that

p1 = (—ikay cos @) po. (5.45)

Thus, if a monopole produces a sound pressure amplitude pg at a distance r from
the source, the combination of it with an equal but opposite monopole at a separation
ay yields a maximum amplitude | p | & pg kay cos ¢, where k = 27 /1. Witha, << A
this means a substantial decrease in sound pressure.

This simple example can be used to illustrate the advantage of providing a loud-
speaker with a cabinet. With the cabinet, only one side of the loudspeaker radiates and
it is equivalent to a monopole at low frequencies (long wavelengths). If the cabinet
is removed both sides of the speaker radiate but one pushes as the other pulls. The
source is then equivalent to a dipole and a reduction in the radiated sound pressure at
low frequencies results. Thus, the cabinet can be thought of as a dipole-to-monopole
converter at low frequencies.

5.3.2 The Oscillating Compact Sphere

An oscillating sphere does not transfer any net mass to the surrounding fluid and con-
sequently has no flow strength, no monopole strength. It does transfer momentum,
however. If the sphere is acoustically compact, the sound field produced therefore
should be of the same as by the point force in Eq. 5.41. The near field in this equation
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is given by the second term. The corresponding velocity field is obtained from the
momentum equation pit, = —dp/dr. The radial component of the velocity in the
near field is then given by

ou, 2

_—= . 5.46

Py 4m3f005¢ (5.46)
For a solid impervious compact sphere sphere oscillating in the x-direction, the

radial component of the velocity at the surface of the sphere is u, = uy cos ¢ and if

this velocity is used in Eq. 5.46 it follows that the equivalent force on the surrounding

fluid produced by the sphere is

da®  Ju,
3 P

3
f= 5 (5.47)
The physical meaning of this relation is as follows. The sound pressure field reacts
back on the sphere with a force equal to that required to accelerate an air mass
which is 3/2 times the mass m = (47a®/3)p of the air displaced by the sphere.
The ‘buoyancy’ force caused by the air in this acceleration accounts for the force
contribution m(du,/3t); the remaining contribution corresponds to the ‘induced
mass’ m /2 due to the flow outside the sphere forced to oscillate back and forth from
the front to the back of the sphere. 2
We have assumed that the sphere is small enough to allow us to use the near field
in Eq. 5.47 which means that f/r >> f/cor f/f << ¢/a. For harmonic time
dependence this means that a << A. In that case the expression for f in Eq. 5.47
can be used in Eq. 5.41 for the calculation of the complete sound pressure field from
an oscillating sphere for all values of r.

5.3.3 Realization of Source and Force Distributions

In the discussion so far in the section, we have introduced an acoustic source distri-
bution Q = Q; and a force distribution F (with a corresponding point source and
point force) without paying any attention to how such distributions can be realized in
practice.

In the conservation of mass equation, the quantity Qr is entered as a source of
mass per unit volume and has to be interpreted, strictly speaking, as a mass creation.
In a one-component fluid, such as air, there is no such creation. Only in a multi-
component fluid is such an interpretation possible. For example, a weakly ionized
gas consists of three components, the neutrals, the electrons, and the ions. Through
collisions there can be a recombination of electrons and ions to form neutrals. Then,
in the acoustic equations for the neutral component alone, there will indeed by a term
in the mass conservation equation that accounts for this ‘creation.”

As shown in Chapter 7, a fluctuating heat source in a gas, such as combustion,
is acoustically equivalent to a flow strength per unit volume Q = [(y — 1)/ c2H
where y is the specific heat ratio, ¢ the sound speed, and H the rate of heat generated

2In the case of a pulsating sphere, we found that the induced mass was pa per unit area of the sphere.
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per unit volume of the gas. This is a common example in which a monopole distribu-
tion can be realized.

The obvious volume force in a fluid is the force of gravity pg. In order for it to be
time dependent and generate sound, the time dependence has to come from p. If
electric charges are involved, as in the ionized gases (plasmas), there are electromag-
netic volume force distributions by far more significant than gravitational.

Actually, a strong nonuniform electric field can produce a force and generate sound
even in a neutral gas. More common, however, is sound generation by force distri-
butions resulting from the interaction of fluid flow with solid objects, as discussed in
Chapter 7. A typical example is the Aeolian tone from a cylinder.

5.3.4 Quadrupole and Higher Multipoles

The dipole source, consisting of two closely spaced monopole sources of opposite
signs, was shown in the previous section to be acoustically equivalent to a point
force. Whereas the monopole field yields the same intensity in all directions, omni-
directional, the field from the dipole was found to have two radiation lobes with the
intensity having the maxima in the tdirections of the force and minima (zero) normal
thereto.

Similarly, a source consisting of two closely spaced point forces of opposite sign has
no dipole strength. Nevertheless, sound will be produced but it will have neither a
monopole nor a dipole contribution to the field. Such a source is called a quadrupole.

If the dipoles, assumed to be aligned along the x-axis, are displaced with respect
to each other in the x-direction by by, the quadrupole thus obtained is called a
longitudinal quadrupole and if the displacement is in the y-direction, it is a lateral
quadrupole. By analogy with the derivation of Eq. 5.43 and the corresponding relation
(5.45), the complex amplitude for the longitudinal quadrupole can be expressed in
terms of the dipole field as follows,

Dxx = (—ikyby)py = (_kzaxbx)po COSZ Ox, (5.48)

where, as before, k = w/c.
With the dipoles displaced with respect to each other in the y-direction a distance
by, the resulting complex pressure amplitude becomes

Pxy = (—ikxby) px = (—k2axbxby)p0 COS ¢y COS Py, (5.49)

where ¢, is the angular coordinate of the field point with respect to the x-axis and
¢y = /2 — ¢, is the angle with respect to the y-axis. The quantities ga,a, and
qaxay are called quadrupole moments.

The radiation pattern for the longitudinal quadrupole has the same general form
as that of the dipole, although the beams are narrower. The lateral quadrupole has a
cloverleaf pattern with zeroes in the x-and y-directions.

The fields from higher order multipoles are constructed in a similar manner, and
it follows that the far field amplitude of the mth order multipole will contain an
amplitude factor (kd)™ po, where we have used a characteristic length to signify the
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relative displacements of the multipoles. At low frequencies, kd << 1, the far field
is dominated by the multipole of lowest order.

As an illustration, we comment on the performance of a loudspeaker assembly at
low frequencies. Thus, consider four speakers mounted in one of the walls of a sealed
cabinet. By operating pairs of speakers in phase or 180 degrees out of phase, the far
field produced at low frequencies can be degraded from a monopole to a dipole or a
quadrupole field by choosing the phases appropriately (how?) with a corresponding
reduction in the radiation efficiency.

5.3.5 Circular Piston in an Infinite Baffle

The sound radiation from a uniform oscillating piston in an infinite rigid wall is a
classical problem and a summary of the analysis is given here. For details, we refer
to Appendix A.

Far Field

The piston has a radius a and a velocity amplitude U, as indicated in Fig. 5.2. The
sound field produced by the piston in the right hemisphere is the same as that pro-
duced by the piston pair on the right. Due to symmetry, the particle velocity normal
to the plane of the pistons will be zero for r > a, the same as for the infinite baffle.
The piston pair represents a monopole distribution with an acoustic source strength
20 = (—iw)(2pU) per unit area and the sound field is obtained by integrating the
corresponding monopole field contribution over the piston area, as shown in Appendix
A. The resulting sound pressure distribution in the far field is found to be

etkr 5 J1(kasin0)
_a —

r ka sin

p =20 (far field), (5.50)

Rigid | Baffle
Free field

P
2at=>U U<—||—=U

Figure 5.2: Left: Circular piston radiator in an infinite acoustically hard baffle. Right: Equiv-
alent piston pair in free field.
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where Jj is the Bessel function of first order and Q = (—iw)(pU). The corresponding
normalized intensity distribution, directivity pattern, is given by

Intensity distribution. Circular piston source in a wall (551)
10)/1(0) = |2J; (ka sin 8)/(ka sin 6))2 '

la: Piston radius. 6: Angle from axis. k = w/c = 2m /1. A: Wavelength)].
I1(6/1(0) = 1 along the axis # = 0 and zero where J(ka sinf) = 0, i.e., for
ka sin@ = 3.83, 7.02, 10.15, etc. The first angle of zero intensity is given by

sinf; = 3.83/ka ~ 0.611/a. (5.52)

The maximum intensity in the main lobe is 7(0) = [(ka)?/S](a/r)? Ug,oc), pro-
portional to the square of both the frequency and the area of the piston.

The maximum in the secondary lobe between the angles 61 and 65 is only 0.02 of
that in the main lobe, and the other maximum are insignificant. Thus, the bulk of the
radiated power is contained in the main lobe.

We leave it for Problem 6 to calculate the total radiated power and the correspond-
ing radiation resistance.

Radiation Impedance

By integrating the sound pressure in the near field over the piston area, the radiation
impedance can be calculated as shown in Appendix A and the normalized value is

2J1(2ka) .28 (2ka)
_i ,

(5.53)
2ka 2ka

=0 +i,=1-—

where S is the Struve function. In the low-frequency regime, ka << 1 (A >> a),
where the source is acoustically compact, the radiation impedance reduces to

—i—ka. (5.54)

The reactance corresponds to a mass end correction § = (8/37) a and a mass load
8p per unit area of the piston.

The total power radiated by the pistonis IT = (mra®)pch, U? /2 (if U is the rms value,
the factor 1/2 should be omitted). In the low-frequency regime it is proportional to
the square of both the area and the frequency of the piston.

5.3.6 Problems

1. Sound fields from harmonic source and force distributions

With reference to Egs. 5.37 and 5.39, what are the expressions for the complex amplitude
of the radiated sound pressure field from

(a) a harmonic acoustic source distribution with the complex amplitude Q(r’, w), and
(b) a harmonic force distribution with the complex amplitude F(r’/, w)?
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2. Field from a compact oscillating sphere
A sphere of radius a oscillates in the x-direction with the velocity u = |u| cos(wt). With
reference to Egs. 5.47 and 5.41, determine
(a) the sound pressure and radial velocity fields p(r, t) and u, (r, t) and
(b) the corresponding complex amplitude fields.

3. Sound field from the vortex shedding by a cylinder

A solid cylinder in a mean flow is known to generate a periodic stream of vortices (Kar-
mén vortex street). As a result there will be a periodic force exerted on the cylinder,
transverse to the flow. The radius of the cylinder is small compared to the wavelength.
In calculating the corresponding sound field generated as a result of the vortex shed-
ding, treat the cylinder as a force distribution with the force | f| cos(wt), i.e., complex
amplitude f(w) = |f|, per unit length. The length of the cylinder is L. Derive an
expression for the complex sound pressure amplitude in a plane perpendicular to the
cylinder through the midpoint of the cylinder.

4. Effect of a loudspeaker cabinet
A loudspeaker with a diameter of d = 4 inches is placed in a cabinet and is found to
produce a sound pressure level of 70 dB at a distance of r = 10 feet on the axis of the
speaker and at a frequency of 50 Hz.
(a) Estimate the average velocity amplitude of the speaker.
(b) Estimate the reduction in level at the same location when the cabinet is removed
with the velocity amplitude of the speaker kept the same. In treating the speaker as
a dipole, assume the separation of the monopoles involved to be the diameter of the
speaker.

5. Average intensity in a dipole field
Two monopoles a distance d apart make up a dipole field. What is the average sound
intensity over the far field sphere surrounding the source in terms of the value for one
monopole alone. Assume d << A. In particular, if d = 4 inches and the frequency
50 Hz, what is the difference in the average sound pressure levels in the two cases?

6. Radiated power and radiation resistance of a circular piston
Consult an appropriate mathematics text (for example, McLachlan Bessel functions for
engineers, page 98) and confirm that

in6dé = (1— .
ka sin @ s ( ka )(ka)2

/”/2 2J1 (ka sin 6) J1@ka) 2 (5.55)
0

Then, calculate the total power radiated by a piston in an infinite wall and determine
the corresponding normalized radiation resistance of the piston.

5.4 Random Noise Sources

If a source of force distribution is random, the total mean square value of the radiated
pressure is the sum of the mean square pressures from the elementary sources in the
distribution. The mean square value of the acoustics source strength per unit volume
atapoint 7’ is denoted 02(r"), where Q now is the rms value. It follows from Eq.5.37
that the mean square value of the sound pressure at a point of observation r is

201
Q(r)dr/

1672 lr —r'|2 ' (5.56)

P =
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If the source distribution is not random, the interference between the sound con-
tributions from different elementary sources must be considered and the resulting
sound field will have pronounced maxima and minima at locations of constructive and
destructive interference.

5.4.1 Two Point Sources

Consider two random point sources located at y = =£d/2, each with an acoustic
source strength ¢, which is now taken to be the rms value. The mean square values of
the sound pressures contributions from the two sources add so that the mean square
pressure at the field point x, y in a plane containing the sources is

D (5.57)

2 1 1
2_ 4 +
1672 |:x2+(y_d/2)2 x2+(y+d/2)2]

.

5

SPL, dB
/

9)

(X
o

Figure 5.3: Left: SPL contours, 105, 100, 95, 90, 87,5, 85, and 82,5 dB, around two random
noise point sources at y = d/2 and y = —d/2 plotted versus the normalized coordinate
X = x/(d/2) and Y = y/(d/2). The combined power level of the two sources is 100 dB.
Right: SPL versus X along the centerline of the sources at y = 0.

The combined acoustic power output of the sources is
2q2

W = . (5.58)
4mpc

This quantity can be considered known and g® can be expressed in terms of it. The
corresponding power level is PW L = 10log(W/W,), where the reference power is
W, = 10712 w as defined earlier.> The sound pressure level L = 10log[p?/ p%], can
then be written

: 1 1
SPL =PWL — 10log(8md*/4A,) + 10log [xz -t eraT 1)2] :

(5.59)

3Recall that it can be expressed as W, = I Ay, where I, = pg /pc is the intensity corresponding to the

reference (threshold) sound pressure (rms) pg = 2 x 1075 N/m2 and the area A, is 1 m2.
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where X = x/(d/2) and Y = y/(d/2) are normalized coordinates.

In Fig. 5.3 are shown the SPL contours in the X, ¥ plane with two random point
sources at y = d/2and y = —d/2,i.e., at Y = £1. In this particular example, the
combined power level of the two sources is 100 dB. At distances X > 1, the sound
pressure level approaches the value that would have been obtained if the two sources
were into a single source at the origin (see Problem 1).

5.4.2 Finite Line Source

As another example, we consider a random noise source distribution along the y-axis
from y = —L to y = L, with the rms source strength Q(y’) per unit length so that the
mean square value is 02%(y"). The sound pressure field at a perpendicular distance x
from the center of the line source then becomes

L 204,/
S R s O N
oY= /_L (Am)2(x2 + y2) dy’. (5.60)

For a uniform source distribution, Q, the integral becomes elementary and

2
= % arctan(L/x). (5.61)

If x >> L, the result is p?>(r) = (2L)Q%/(167%x?) and if x << L, p(r)> =
(7/2)Q%/(167° x).

In other words, at a distance x large compared to the source size, the field is
the same as that from a point source with the total mean square source strength
2L 02 and the mean square pressure decreases as the square of the distance x. The
corresponding sound pressure level then decreases by 10 log(xz) with a decrease of
~ 6 dB for every doubling of the distance x.

At a distance x small compared to the source size, p? becomes independent of
the length of the source and decreases as 1/x with the distance x (i.e., with an
x-dependence of the level given by 10log(x) corresponding to a decrease by ~ 3
dB for every doubling of the distance x).

The sound pressures in these two regions are the same at x = 2L, signifying the
transition between the near field and the far field.

It is left for Problem 3 to show that at a field point x, y, rather than x, 0, as in the
previous case, we obtain

Pix) =

pQ(X Y) = 0 l arctan(z—X
’ 1672L X X24+v2-1
where X =x/Land Y = y/L.

The total power generated is W = 2L 0%/(47pc) and the source strength Q can
be expressed in terms of W, if so desired and the sound pressure level obtained from
Eq. 5.62 can be expressed in terms of the power level, as discussed in Section 5.4.1.
Thus,

), (5.62)

5 1 2X
SPL=PWL —10log(8L*w/A,) + 10log X arctan( 1) . (5.63)

X2+Y2_
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Figure 5.4: Left: Sound pressure level contours, 82.5, 85, 87.5, 90, 95, 100, and 105 dB,
around a uniform line source with a power level of 100 dB and alength 2L = 2 m. Right: The
x-dependence of the sound pressure level in the mid-plane of the source with X = x/L and
Y = y/L.

In the numerical example on the left in Fig. 5.4, the line source has a power level
of 100 dB and L = 1 m. Sound pressure level contours for 105, 100, 95, and 90 dB
are shown which can be considered to describe the near field of the source. The
coordinates are X = x/L and Y = y/L where L is half of the length of the source.
As the distance from the source becomes larger than L, the contours approach the
circular form characteristic of the field from a single point source at the origin.

The graph on the right in the same figure refers to the same line source and shows
the sound pressure level along the X-axis. As X increases, the mean square pressure
goes from a 1/ X-dependence close to the source to a 1/X 2 dependence in the far
field. The corresponding decrease of the sound pressure level (SPL) in these regions
is approximately 3 dB and 6 dB per doubling of distance, respectively; the transition
between these occurs approximately at X =1 (x = L).

5.4.3 Circular Source Distribution

As another example, consider a circular source distribution of radius R atx = 0in a
plane perpendicular to the x-axis. The point of observation is at x and y = 0, i.e., on
the axis of the source. Again, the source distribution is uncorrelated with the source
strength Q (rms) per unit area. The mean square sound pressure at x is then

1 R
p(x)? = / Q%(r"@2rr'ydr'. (5.64)
1672 0
For a uniform source distribution the integral is elementary and we get
: 0° 5, 2
p>(x) = ——x In(1 + R%/x). (5.65)
1672

Far from the source, with x >> R, this reduces to (7 R%) 02/(162x2), i.e., the
same as for a point source.
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5.4.4 Problems

1. The field from two point sources
Examine the result shown in Fig. 5.3. At distances from the source, X > 1 (X =
x/(d/2)), the sound pressure level is expected to approach the value obtained if the two
sources were combined and placed at the origin. Determine whether the result in the
figure is consistent with this expectation.

2. Noise from an exhaust stack
Regard the end of a circular exhaust stack as a circular source with a uniform random
noise distribution. The total power level of the noise emitted is 120 dB re 1072 w. The

diameter D of the stack is 4 m. What is the sound pressure level a distance D above the
stack on the axis of the stack?

3. Directivity of a random line source
(a) Show that Eq. 5.62 agrees with Eq. 5.61 for y = 0.
(b) Discuss the angular distribution of the sound pressure level in the xy-plane. (Use
x=rcos¢gand y =rsing.)
4. Directivity of random circular source
Generalize the result in Eq. 5.65 and determine p2 at a point (x, y rather than x, 0.)

Discuss the angular distribution of the sound pressure level. Apply the result to the
exhaust stack in Problem 2.

5.5 Superposition of Waves; Nonlinearity

In previous chapters we have been concerned with the basic physics of sound and
specifically with the field from a single sound source. Thus, the determination of the
field from a collection of sources does not involve anything basically new; the addi-
tional problems, such as wave interference, for example, are essentially geometrical
(kinematic) and are pretty much the same as for other types of waves, not only sound
waves. Formally, the field is obtained by adding a number of complex amplitudes
representing the individual waves. Thus, for quantitative details of superposition, we
can refer to general treatments of waves.*

Actually, in order to have wave interference phenomena, we do not necessarily have
to have several sources. A single source will do, if we account for multiple reflections
from several objects or wave transmission through several apertures in a screen, for
example.

In regard to the superposition of waves referred to above, it is very important to
realize that it was tacitly assumed that a linear addition was involved. Although this
is indeed valid for waves of sufficiently small amplitudes, it is not true in general.

The reason is that a wave, such as a sound wave, changes the state of the material
carrying the wave, albeit slightly, and hence affects the local wave speed.5 The change
of state is nonlinear, and this nonlinearity has important consequencies when it comes
to the question of superposition of waves and their interference.

4See, for example, K.U. Ingard, Fundamentals of Waves and Oscillations, Cambridge University Press,
Oxford. First printed 1988. It contains numerous examples of computed field distributions from a variety
of source configurations.

5What is the corresponding situation for an electromagnetic wave in vacuum?
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As a familiar illustration of nonliearity, consider the compression of an ordinary coil
spring by a force applied at the end of the spring, compressing or stretching it. For a
very large compression, the coil spring takes the form of a solid tube and for a large
extension, it becomes a single strand. In both these limits, the ‘stiffness’ becomes
very high. In general, the relation between the force F and the displacment £ is
nonlinear, i.e.,

F(§) = F(0) 4+ £ 0F/0€ + (£2/2) 0> F/3&> + - - - . (5.66)

In this power expansion of the force in terms of the displacement, the first term is
a ‘bias’ force. The second term is the one used in a linear analysis and 9 F /9§ is the
spring constant, normally denoted K. We have assumed here that F is independent
of the velocity. The compliance of the spring is defined as 1/K.

In a similar manner, we can express the displacement in terms of the driving force
and conclude that a harmonic driving force will produce a displacement which con-
tains in addition to the fundamental frequency of the driving force also harmonics
thereof.

In the case of a fluid, let the relation between the pressure P and density p in a
fluid be expressed by P = P(p). A sound wave causes perturbations § = dp and d P
in the density and pressure. Regarding the pressure as a function of density, a power
series expansion of the pressure yields

P(p) = P(po) +80P/dp + (82/2) 2P /dp> + -+ . (5.67)

With p being the first order perturbation and with P/Py = (p/po)? (isentropic
change of state) we get

P—Py=p+(p/POpy(y —1)/2y% (5.68)

The second term is nonlinear and if the sound pressure p is harmonic with an
angular frequency w, the nonlinear terms will contain a frequency of 2w. Normally,
its amplitude will be small, however.

For example, the sound pressure level in normal speech is about 60 dB. With a
reference rms pressure amplitude of p, = 0, 00002 N/ m? the corresponding sound
pressure amplitude is obtained from 20log,, p/pr = 60 or p = 10%0.00002 = 0.002
N/m?. With the normal atmospheric pressure being Py ~ 10° N/m?2, the nonlinear
factor p/ Py in Eq. 5.68 will be of the order of 2 x 1077. Thus, the corresponding
nonlinear distortions will be quite small. For a jet engine, the level readily could be
140 dB, in which case this factor would be 10* times larger.

One nonlinear effect gives rise to a distortion of an initially plane harmonic wave
through the generation of harmonic components. Qualitatively, this distortion can
be understood also by realizing that the local speed of sound is affected by the sound
in two ways. First, the sound speed increases with temperature and consequently
will be slightly higher in the crest of the sound wave than in the trough; second, the
particle velocity in the crest is in the direction of propagation (and in the opposite
direction in the trough). These effects collaborate in making the local sound speed in
the crest higher than in the trough. Thus, as the wave progresses it will be distorted
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as the crest tends to catch up with the trough. We refer to Chapter 11 for further
disucssion.

If two sound pressures of different frequencies w1 and ws are involved, the non-
linear term will produce harmonic pressures with the sum and different frequencies
w1 + ws and w1 — wa. Accordingly, experiments have been carried out to verify the
existence of the scattered sound.®

5.5.1 Array of Line Sources. Strip Source

The field distribution from an array of N infinitely long line sources in a plane perpen-
dicular to the lines will have the same form as that for the N point sources. The field
will be independent of the y-coordinate which is parallel with the lines. Although
there is a difference in the r-dependence of the intensity of a point source and a line
source, the angular distribution will be the same.

A sound source in the form of an infinitely long vertical strip of width b can be
considered to be an infinitely extended uniform distribution of finite horizontal line
sources of length b equal to the width of the strip. The calculation of the angu-
lar distribution of the radiated sound field in the horizontal plane then involves an
integration over the width b of the strip. (see Problem 5).

Phased Array. Moving Corrugated Board

As an example of a phased array of line sources, we consider the radiation from a
moving corrugated board. For simplicity, it will be assumed to be of infinite extent.
The board moves with a velocity U in the plane of the board in the direction perpen-
dicular to the corrugations, as illustrated in Fig. 5.5. The example is relevant to our
discussion of sound radiation from an axial fan in Chapter 7.

On the left in the figure, the board is moving with subsonic speed, U < c. The
wavelength of the corrugation is A, the frequency of the generated sound will be
f = U/A and the wavelength A = ¢/f. With U < c, we have A > A and it is
not possible to fit a traveling plane sound wave to the corrugations regardless of the
direction of propagation. A pressure disturbance is still produced by the board but it
turns out to decay exponentially with the distance from the board (evanescent wave).
The situation is much the same as for the generation of sound by a source in a duct
below the cut-on frequency, as discussed in Chapter 6, and the physical reason for
the decay is the interference between the sound from the crests and the valleys of the
board which becomes destructive as the corresponding path difference goes to zero
with increasing distance to the observation point.

The surfaces of constant phase of the resulting evanescent wave are perpendicular
to the board and are illustrated by the thin lines in the figure. The surfaces of constant
pressure magnitude are parallel to the board. To illustrate that the pressure decreases
with the distance from the board, the corresponding lines of constant pressure are
drawn with different thicknesses.

6Uno Ingard and David Pridmore Brown, Scattering of Sound by Sound, Journal of the Acoustical
Society of America, June 1956
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Figure 5.5: Sound radiation from a moving, corrugated board. Left: Subsonic speed, U < c.
Horizontal lines: Surfaces of constant phase. Vertical lines (thickness indicating level), surfaces
of constant sound pressure Right: Supersonic speed, U > c¢. Lines indicating surfaces of
constant phase (wave fronts). The magnitude of the sound pressure amplitude is the same
everywhere (plane wave).

.

If the velocity is supersonic, U > c, the situation is quite different. The wavelength
of the emitted sound, A = ¢/f = (c¢/U)A, now becomes less than the corrugation
period A and a plane sound wave can now be matched to the boundary as it travels in
a direction which makes an angle with the normal given by sin¢ = ¢/ U. As we recall
from the discussion of sound radiation from the bending wave on a plate, the trace
velocity of the sound wave generated is ¢; = ¢/ sin ¢, and the boundary condition can
be satisfied only if this velocity equals the velocity U of the board.

5.5.2 Problems

1. Pulsating sphere

The radial surface velocity of a sphere of mean radius @ = 5cm is harmonic with a
frequency 1000 Hz and with a uniform velocity amplitude 0.1 cm (rms).

Neglecting sound absorption in the air, determine the distance at which the sound
pressure amplitude will equal the threshold of human hearing (0.0002 dyne/cm2 rms).

2. Radiation from an array of N sources (the hard way)

Carry out the analysis of sound radiation from an array of N point sources with harmonic
time dependence without the use of complex variables. As before, consider the far field
only.

3. Array of point sources with no net source strength

Reconsider the analysis of the radiation from a linear array of an even number of N
point sources but rather than being in phase, there is a phase difference of 7 between
adjacent sources. Consequently, the total source strength of the array is zero.



THE WAVE EQUATION 173

=~1

. Radiated power from a uniform line source

Use the far field distribution of intensity from a uniform harmonic line source and show
that the total radiated power is the same as the power from a point force with the acoustic
source strength equal to the total source strength of the line source.

. Radiation from a strip source

An infinitely long strip of width b has a uniform harmonic acoustic source distribution
with a complex amplitude g.

(a) Determine the angular distribution if the intensity in the far field in a plane perpen-
dicular to the strip and the radiated acoustic power per unit length of the strip.

(b) What would be the result for a source with a random time dependence?

. Radiation from circular disk

Derive an expression for the complex sound pressure amplitude produced by a uniform
source distribution over a circular disc of radius R. Let the field point be on the axis of
the disc, a distance x from the center. The complex amplitude of the acoustic source
strength per unit area is g.

. Antenna of line sources

An antenna consists of an array of N = 10 line sources placed along a straight line with a
distance between adjacent source of d = 101, where A is the wavelength of the emitted
wave.

(a) How many intensity maxima are there in the radiation field around the antenna from
0 to 360 degrees?

(b) If N is increased to 20, what is the change in the number of intensity maxima?

. Sound radiation from moving corrugated board

(a) In the sound field from a corrugated board moving at subsonic speed (Fig. 5.5), show
that the pressure and axial velocity are 90 degrees out of phase. What does that mean
in terms of the acoustic power radiated from the board.

(b) For a board with a corrugation amplitude & = 0.01A, where A is the wavelength of
the corrugation, what is the ratio of the magnitudes of the sound pressure at a distance
A from the board obtained with the board velocities 0.5c and 2c, respectively?






Chapter 6

Room and Duct Acoustics

6.1 Diffuse Field Approximation

6.1.1 Reverberation Time

Much attention has been paid to the acoustics of concert halls and other enclosed
spaces for lectures and the performing arts. Many factors, both physical and psycho-
logical, influence the judgment of the acoustic quality of rooms and many descriptors
have been introduced and used in an effort to quantify various aspects of this concept.
Systematic work in room acoustics began almost 100 years ago with the pioneering
studies by Sabine, then a physics professor at Harvard. For further comments on
Sabine, see Section 1.2.2.

We start by deriving Sabine’s formula for the reverberation time in a room. The
sound field is assumed to be diffuse which means that at a point in the room sound
arrives from all direction with equal probability and intensity. Thus, if the point
of observation is surrounded by a spherical control surface, the contribution to the
acoustic energy density within the sphere from every solid angle element d$2 on the
sphere will be the same and we express it as (Ip/c)d$2, where Iy is an intensity and ¢
the sound speed (see Chapter 3). The fact that the field is diffuse means that these
contributions are all uncorrelated so that their energies add. Then, with a total solid
angle of the spherical control surface of 47, the total energy density becomes

E =4nly/c. (6.1)

Again, using the intensity Iy, we can express the acoustic power incident on a wall
element of unit area in terms of Ij as follows. Place a spherical control surface of unit
radius with the center at the wall element and consider a wave that strikes the wall
at an angle of incidence ¢. The solid angle between ¢ and ¢ + d¢ is a ring of radius
sin ¢ on the sphere with an area 27 sin ¢ d¢ (see Fig. 4.4). Thus, the total intensity
that strikes unit area of the wall at an angle of incidence ¢ will be Iy 27 sin ¢ cos ¢ d¢
since the power intercepted by a unit area of the wall will be Iy cos ¢.

Integrating over the entire control surface, we obtain the total power per unit area,
the diffuse field intensity 14,

/2
Iy = / Ip 2 sing cosp = wly = Ec/4, (6.2)
0
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where we have used Eq. 6.1; E is the acoustic energy density introduced above. Thus,
the average intensity on the wall in the diffuse field is one quarter of the intensity of
a wave at normal incidence with the same energy density E.

We define the diffuse field absorption coefficient oy such that Iy is the absorbed
power per unit area. Thus, with I; = Ec¢/4 and with the physical area of an absorber
on a wall being A, the absorbed power will be (Ec/4)Aag and the quantity Aag is
the absorption area. The coefficient ay is the same as the angle averaged absorption
coefficient given in Chapter 4, Eq. 4.53.

These considerations imply an infinitely extended surface so that edge effects
(diffraction) of the absorber can be ignored. In reality, with a finite absorptive wall el-
ement, this is no longer true, and the effective absorptive area will be larger than Aag.
It is generally quite difficult to calculate, even for an absorber of simple shape. The
actual absorption area will be denoted A, and a corresponding absorption coefficient
oy is defined by Ay == ayA. The absorbed power is then A, (E /4c).

In this context of room acoustics, we shall call A the absorption area or the Sabine
(area) and the corresponding absorption coefficient oy = A;/A will be called the
Sabine absorption coefficient. It is this coefficient that is measured by the rever-
beration method, to be described below. It can exceed unity, particularly at low
frequencies when diffraction effects play a significant role.

With the volume of the room denoted V, the total acoustic energy in the room is
EV and the rate of decrease of it must equal the absorbed energy, i.e.,

Decay of energy density in a room
VAE/dt = —AzEc/4) ie., . (6.3)
E(t) = E(0) e (As/4V)1

In other words, the energy density and hence the mean square sound pressure
in the room decays exponentially, the decay constant being proportional to the total
absorption area (cross section) A; = A«y and inversely proportional to the volume.
If the absorption coefficient varies over the area, A has to be replaced by the average
value.

The reverberation time is defined as the time in which the average sound pressure
level in the room decreases 60 dB. It follows from Eq. 6.3 that

CAj

4V

10log[E(0)/E(1)] = — £ 10 log(e). (6.4)

Thus, with the left side put equal to 60 and the reverberation time denoted 7., we
get

Reverberation time 6.5)
T, = 240/[10log(e)] (V/cAy) ~ 55 V /c A, '

[V: Room volume. Ay: Absorption area (Sabine) (product of absorption coefficient
and absorber area. c: Sound speed.]

Introducing the numerical value for the sound speed ¢ ~ 342 m/s, the numerical
expression for the reverberation time becomes 7, ~ 0.16 V /A, where V and A, are
expressed as m? and m2, respectively.
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For example, for a cubical room with a side length L, the internal surface area is
6L2, and the reverberation time becomes 7, = 0.027 L/ay. Thus, with L = 10 m
and a Sabine absorption coefficient of 10 percent, the reverberation time becomes
2.7 seconds.

A reverberation room in an acoustical testing facility typically may have a reverber-
ation time of about 10 seconds at low frequencies (200 Hz, say). Among the quantities
that have been proposed and used for the description of the acoustics of a room, the
reverberation time is still regarded as a primary parameter. For example, there is
good correlation between the intelligibility of speech in a lecture room and the rever-
beration time so that an optimum value can be established. Such a correlation can be
determined by the fraction of randomly selected spoken words from the podium that
can be understood by a listener in the audience. The optimum reverberation time
depends on the room size, but typically is about one second.

To determine an optimum reverberation time for music is a more subjective matter
and depends on the character of the music; typically this optimum is between 1 and
3 seconds.

The expression for the reverberation time in Eq. 6.5 accounts only for the ab-
sorption at the walls (by acoustic treatment) and formally goes to infinity when the
absorption coefficient of the absorptive material on the walls goes to zero. In reality,
even a rigid, impervious wall yields some absorption because of visco-thermal losses,
and sound transmission through the wall is equivalent to absorption. From the dis-
cussion in Section 4.2.4, the diffuse field average absorption coefficient of a rigid wall
can be shown to be

a~17x1074/f, (6.6)

where f is the frequency in Hz.

There is also sound absorption throughout the volume of the room due to visco-
thermal and molecular relaxation effects. With the spatial decay of the intensity
expressed as Iy o« exp(—pBx), the corresponding temporal rate of decrease of the
energy density in a diffuse sound field in a room, following Eq. 6.1, will be ScE. This
means that the right-hand side of Eq. 6.3 has to be replaced by —Ec(8V + aA/4),
where « is the visco-thermal absorption coefficient and A the total wall area.

From Eq. 6.3 it follows that the decay of the acoustic energy density due to visco-
thermal losses at the walls and losses throughout the volume of a room is given by

E(t) = E(0)e~(BFad/4V)et (6.7)

For sufficiently large rooms and high frequencies, the absorption in the volume of
the room dominates.

In regard to numerical results, we already have an expression for the frequency
dependence of the absorption coefficient in Eq. 6.6. For 8, we refer to the discussion
in the chapter on atmospheric acoustics, in particular Fig. 10.2, where, at a temper-
ature of 20°C, the wave attenuation is plotted in dB/km as a function frequency. For
relative humidities less than 50 percent, the vibrational relaxation effects (of Oxy-
gen) dominate, and at 50 percent, the attenuation can be written approximately as
(f/1000) dB/km. The corresponding expression for f is then

B~ 2.29(f/1000)2107* m~!, (6.8)
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where we have used 10log(e) ~ 4.36.

The condition that the two absorption effects contribute equally to the decayis 8 =
o A/4V, and with the numerical values given in Eqs. 6.6 and 9.16, this corresponds
to £/1000 = 3.27(A/V)*/3, where the length unit is 1 meter. For a cubical room
with a side length L, this means f/1000 ~ 10.9(1/L)*/3. Thus, with L = 10 m, the
volume absorption will exceed surface absorption at frequencies above 1000 Hz.

6.1.2 Measurement of Acoustic Power

One method of measuring the acoustic power of a source is to place the source in free
field and integrate the acoustic intensity over a closed control surface surrounding the
source. The intensity can be measured with an intensity probe described in Section
3.2.3. Free field conditions can be approximated in an anechoic room.

Another method, considered here, is to put the source in a reverberation room,
discussed above. The absorption in such a room is very small and diffuse field con-
ditions can be approximately achieved. With the source operating in steady state,
the power output IT must equal the total power absorbed by the walls and by the
air itself in the room. The latter absorption is usually negligible and we shall omit
it here. Thus, with reference to the previous section, the absorbed power can be
written (Ec/4)As = [(p®)av/pcl(c/4) Ay, where Ay is the absorption area, defined
in the previous section, and ( P)av is the spatial average of the mean square sound
pressure in the room. In practice, the averaging is achieved by the use of several
microphones in the room. Thus, in terms of these quantities, the source power can
be expressed as

IT=(Ec/4)As, (6.9)

where E = (p?)av/pc. The absorption area is determined from the measured rever-
beration time, Eq. 6.5.

In practice, a reference source with known power output I, (measured according
to Eq. 6.9) is generally used to “calibrate’ the room. Then, if the average mean square
sound pressure obtained with this reference source is ( P2)av, the power from the
actual source will be

1 = [(pHav/(PDav] T, (6.10)

Thus, if the power level of the reference source is PW L, the power level of the
actual source is then

PWL = PWL, + 10log[(p®)av/(P?)av]l = PWL, + SPL — SPL,,  (6.11)

where SP L stands for the average sound pressure level in the room.

6.1.3 Measurement of the (Sabine) Absorption coefficient

With reference to Eq. 6.5, the absorption area (or cross section) Ay of a sample of
wall treatment is obtained from the measurement of reverberation time in a room,
as follows. First, the reverberation time 7, of the empty room is measured. This
yields an absorption area S of the empty room. Next, one or more of the interior
room surfaces is covered with the material to be tested. The reverberation time T,
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is measured; it yields the new total absorption areas S’. The increase is attributed to
the test sample and it is

Measured absorption area A (6.12)
Ay =8 —S~55(V/e)1/T —1/T,) '

[V: Room volume. c: Sound speed. S', S: Total absorption area with and without
test sample. T, T — r: Reverberation time with and without test sample present.]

If the physical area of the test sample is A, the corresponding Sabine absorption
coefficient is gy = A/ A.

It is important to realize the distinction between the measured Sabine absorption
coefficient oy and the computed diffuse field absorption coefficient oy (always less
than unity). The latter implies an infinite test sample and is the quantity in Eq. 4.53
computed from the known angular dependence of the absorption coefficient for a
particular material.

6.1.4 Measurement of Transmission Loss of a Wall

Following the discussion of the measurements of acoustic power and the absorption
coefficient in the previous two sections, the procedure for the measurement of the
diffuse field transmission loss of a partition can be readily understood.

The partition is installed in an opening in the wall between two reverberation rooms,
a source room and a receiving room. The source room contains the sound source,
usually one or more loudspeakers. Several microphones are used in both rooms for
the measurement of the average rms sound pressure.

The transmission loss of the wall is much greater than that of the partition so that
the power transmitted through the wall can be neglected. Diffuse sound fields in both
rooms are assumed. With the area of the partition being A, the power transmitted
is then A ,tyE14/c, where Ej is the acoustic energy density in the source room and
7, the power transmission coefficient. This power takes the place of IT in Section
6.1.2, Eq. 6.9, and gives rise to an energy density Es in the receiver room given
by Eo = [4/(cAy)]A,t5E1(4/c), where, as before, Aj is the absorption area in the
receiver room. It follows then that

Ty = (Ea/E1)(Ap/Ay). (6.13)

Expressing the energy densities in terms of the rms values of the average sound
pressure in the two rooms, we obtain for the transmission loss

TLy = 10log(1/t,) = SPL; — SPLy + 10log(A ,/Ay). (6.14)

As for the measured absorption coefficient, we use the subscript s to indicate
that it refers to a Sabine approximation in describing the sound fields in the test
rooms and the use of a finite partition. In the calculations of the transmission loss
in Chapter 4, a partition of infinite extent was assumed. The transmission loss then
could be expressed in a relatively simple manner in terms of the physical parameters
of the partition. In this respect, there is a correspondence between the diffuse field
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absorption coefficient ey and the diffuse field transmission loss T' L4, both computed
quantities. This should be borne in mind when comparing experimental data with
calculated.

6.1.5 Wave Modes in Rooms

We have already discussed a normal mode of a tube of length L and closed at both
ends with rigid walls at x = 0 and x = L. It was found to be of the form

pe(x, t) = A cos(kex) cos(wyt), (6.15)

where k¢ = €n /Ly, wg = ck¢, and € = 1,2---. This mode has £ pressure nodes,
each at a distance from the rigid walls of an integer number of quarter wavelengths.
We also considered briefly modes in two and three dimensions in Section 3.4.8.

In three dimensions and rectangular coordinates, a complex amplitude of the sound
pressure is assumed to be of the form p = X (x)Y (y) Z(z) (‘separation of variables’).
When inserted into the wave equation V2 p+(w/c)?p = Oitleadsto X"/ X +Y" /Y +
Z"/Z + (w/c)? = 0, where the primes indicate differentiation with respect to the
argument of the function involved. The first term is a function of x only, the second
of y only, and the third of z only, and in order for this equation to be satisfied for all
values of the variables, each of the terms must be a constant such that the sum of the
constants will cancel (w/c)?. Thus, with the constants denoted —k%, —k% , and —k?,
the equation for X becomes X” + kfX = 0, with analogous equations for Y and Z.
Thus, each variable satisfies a one-dimensional harmonic oscillator type equation for
which we already know that X oc cos(kyx — ¢x) with similar expressions for ¥ and
Z. The corresponding velocity field is obtained from the momentum equation, i.e.,
—iwpuy = —9p/dx, etc. If u, = 0 at x = 0 (acoustically hard wall), we have ¢, = 0
and if u, = 0 also at x = L,, we must have sin(kyL,) = 0, i.e., ky = £m, where £ is
an integer.

Then, in a rectangular room with hard walls at x =0 and L,, y = 0 and L, and
z=0and y = L, the expression for the complex pressure amplitude will be of the
form

Pe,mn = A cos(kyx) cos(kyy) cos(k;z), (6.16)

where ky = /Ly, ky = mm/Ly, and k; = nw/L,. A mode with uniform pressure
in the y- and z-directions, corresponding tom = n = 0, has the same form as Eq. 6.15
and is denoted py 0,0 and has £ nodal planes. In general, there will be nodal planes
also in the y- and x-directions.

The frequency of free oscillations in the room follows from the wave equation
32p/ox® +82p/ay? + 82p/3z% — (1/¢»d?p/dt*> = 0, which yields

4k + k2 — @), /P =0 (6.17)

and the normal mode (angular) frequencies

Normal mode frequencies fo mn

(6.18)
Wemn = 27Tf€,m,n =Cy k)% + k% + k?
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[ky = mn/Ly. ky = nm/Ly. k; = nw/L;3 (see Eq. 6.16). Ly, Ly, L;: Room
dimensions. €, m, n: Positive integers. c: Sound speed. ]

The forced motion of a room by the human voice or a musical instrument, for
example, can be determined by analogy with the analysis of the closed tube re-
sponse in Chapter 3. For a given source strength and in the idealized case of a
loss-free room, the sound pressure in the room theoretically goes to infinity when-
ever the driving frequency coincides with a mode frequency. Atlow frequencies, with
the wavelengths of the order of the room dimensions, the resonance frequencies are
relatively far apart, and as the frequency is varied, the room response will be quite
irregular with large variations in the sound pressure. As the frequency increases, the
mode number increases rapidly, as shown in Eq. 3.92, and the response becomes
more regular as the response curves of different modes will overlap.

For a square room, the frequencies wy 0,0, ®0,4,0, and wp 0,4 are all the same, and
when the room is driven at this frequency, there will be three modes which will be
excited at resonance. This results in a large irregularity in the frequency response of
the room and this is to be avoided in order to have good room acoustics. Different
modes of this kind, having the same resonance frequency, are called degenerate and
should be avoided for good acoustics.

6.1.6 Problems

1. Reverberation time
A rectangular room with the dimensions 15 m, 15 m, and 20 m, has a reverberation
time of 4 seconds at a frequency of 300 Hz. It is desired to lower this time to 1 second.
How large an area of wall treatment is needed (neglect diffraction effects) to obtain this
reduction in the reverberation time if the absorption coefficient of the material is 0.7?

2. Measurement of acoustic source power
A rectangular reverberation room with the dimensions 15 m, 20 m, and 20 m has a
reverberation time of 8 seconds. A source in the room produces an average sound
pressure level of 100 dB in the room. What is the power output of the source in watts?

3. Measurement of transmission loss
The reverberation room in Problem 2 is used as the receiving room in a transmission loss
laboratory. The source room and the receiving room are separated by a heavy (double)
wall in which a test sample of a panel, 4 mx 4 m, is inserted into an opening in the
wall provided for this purpose. In a certain frequency band, the average sound pressure
level in the source room is 120 dB and in the receiver room 60 dB. What then is the
transmission loss of the panel?

4. Mode frequencies in a room

List the first ten modal frequencies of a rectangular room with the dimensions 10 m,
12 m, and 12 m. Which modes are degenerate, if any?

6.2 Waves in Ducts with Hard Walls

As before, an acoustically hard wall is one at which the normal velocity is zero. A
rectangular duct can be regarded as a degenerate form of the room considered in
the previous section with one side normally much larger than the others. Suppose
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that this side runs along the x-axis. The part of the wave function that involves this
coordinate in the wave function for the room, cos(k,x) can be considered to be the
sum of one wave exp(ikyx) traveling in the +x-direction and one wave exp(—k,x) in
the negative x-direction forming a standing wave. In the limiting case of an infinitely
long duct or a duct in which there is no reflection, there will be no wave in the negative
direction and the x-dependence of the wave function will be described by exp(ik, x).

6.2.1 Wave Modes. Cut-off Frequency and Evanescence
Rectangular Duct

The complete wave function for the duct then will be composed of two standing wave
components, cos(kyy) and cos(k,z), and a traveling wave component exp(ikyx) so
that the total complex amplitude of the pressure becomes

p(x, w) = Acos(kyy) cos(kz)e**. (6.19)

The real wave function p(x, 1) is obtained by multiplying by exp(—iwt) and taking
the real part of the function thus obtained.

The coefficients ky and k; will be the same as in the wave function for the room
in Eq. 6.16. We are dealing here with the forced motion of the wave and the driving
frequency is w. The wave equation imposes the same relation as before, given in
Eq. 6.17, but this time o is given and we are seeking k.. Thus, with g, in Eq. 6.17
replaced by w and solving for k., we obtain

ky = \/(@/0)2 — k2 — k2. (6.20)

A uniform pressure across the duct corresponds to ky = k; = 0O and ky = w/c, i.e.,
m = n = 0. Itis the plane wave or the fundamental mode in the duct and it is labeled
poo- For other values of m, n there will be nodal planes in the wave parallel with the
duct walls. For example, the wave with ky = mm /L, and k; = nw/L;, has m nodal
planes normal to the y-direction and n, normal to the z direction. The mode, denoted
Pmn, is called a higher order mode and it follows from Eq. 6.20 that the propagation
constant k, for this mode can be written

Propagation constant for higher order mode

ky = (w/c)\/ (1 - (wmn/a))2 = (w/c)y/1— ()L/)‘mn)2
lw = 2nf: Angular frequency. c: Sound speed, free field. wpnn = 27 fnn =

c\/(mn/Ly)2 + (nm/L,)%: Cut-off (or cut-on) frequency ( fimn) for (mn)-mode. hnn =
¢/ fmn: Corresponding wavelength. m, n: Positive integers. m = 0, n = 0: Plane
wave (fundamental mode)].

The real wave function for the traveling wave will be cos(wf — k. x). The amplitude
of the wave remains constant if the phase ¥ = wt — k,x is constant. Thus, in order
to observe an unchanging pressure in the traveling wave, we have to move in the
x-direction with the velocity

(6.21)

cp = o/ky. (6.22)
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It is called the phase velocity (i.e., the velocity with respect to which the phase
remains constant).

At frequencies above the cut-off frequency, k, is less than w/c, and it follows that
the phase velocity is greater than the free field velocity ¢. For visualization, let us
consider a plane wave which travels at an angle ¢ with respect to the x-axis, as shown

in Fig, 6.1.
8
\5\%& Ax=A/cos¢
NN

Figure 6.1: Plane wave traveling at an angle ¢ with respect to the x-axis. Two wave fronts
(phase surfaces) are shown. The separation of the surface in the x-direction is A/ cos ¢ which
is proportional to the phase velocity in the x-direction.

A “‘wave front” is merely a surface of constant phase, i.e., the instantaneous pressure
is the same over the surface. Two wave fronts separated by a wavelength are shown.
They represent a traveling plane wave which moves forward in a direction normal
to the wave fronts with the speed of sound c¢. The important point to notice in this
context is that the separation of the two wave fronts in the x-directionis Ay = A/ cos ¢
and that the intersection point of a wave front with the x-axis moves with the velocity'
¢/ cos ¢ in the x-direction, both greater than the free field values A and c. If we regard
the propagation constant k as a vector, the magnitude being k = w/c, the component
in the x-direction is ky = kcos¢ = 27/A, and the speed of the wave fronts in the
x-direction can be expressed as ¢, = w/k, = ¢/ cos ¢, which is the phase velocity in

Eq. 6.22.
With
cos ¢ =kx/k=\/1— (mA/2Ly)2 =\/1—(fm/f)2 (6.23)
it follows that
sing = mr/2Ly = fu/f. (6.24)

The sum of two plane waves, one traveling in the positive and the other in the
negative ¢-direction, is (exp(ikyy) + exp(—ik,y) exp(ikyx) o< cos(kyy) exp(ikyx)),
i.e., the same as the wave function in Eq. 6.19 (with n = 0). This means that this
higher order mode, py,0(x, w) = Acos(kyy) exp(ikyx), can be interpreted as the
wave field produced by a plane wave traveling at an angle ¢ with respect to the duct
axis, reflected back and forth between the walls of the duct. The general wave, pun,
can be interpreted in a similar manner but is harder to visualize geometrically.

1Sometimes called the ‘trace velocity.
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The phase velocity is a purely geometric quantity; the wave energy is not transported
at this speed but rather with the group velocity which is

cg =cCCosg, (6.25)

the component of the actual sound speed in the x-direction. We note that the group
velocity can be written ¢, = dw/dk, and that cec), = 2.

Cut-off Frequency. Evanescence

Going back to Eq. 6.21, we note that the propagation constant k, for the higher
order mode py, , will be real only if the frequency exceeds the cut-off frequency fu n.
At this frequency the angle ¢ of the obliquely traveling plane wave that produces
the mode will be 90 degrees, i.e., transverse to the x-axis. At a lower frequency, k,

becomes imaginary, ky = i/(fin.n/f)> — 1 = ik;, and the wave amplitude decreases

exponentially with x
px, ) = Ae~kix cos(kyy) cos(k;z). (6.26)

Such a wave is called evanescent; it will be demonstrated and discussed further in
Section 6.2.2.

Circular Duct

In the circular duct, the transverse coordinates which correspond to y, z are the
radius r and the azimuthal angle ¢ (Fig. 6.2). The wave equation is separable, as
before, and the general solution is a combination of products of a function of r,
¢, and x. For an infinitely long duct, the x-dependence of the complex pressure
amplitude will be the same as for the rectangular duct, exp(ik,yx). In the transverse
directions, there will be standing waves analogous to cos(kyy) and cos(k,z) for the
rectangular duct; the wave in the ¢ direction will be cos(kg¢¢) and in the r-direction,
Jm(krr), which is a Bessel function of order m. The radial “propagation constant’
k, will be determined by the boundary condition that the radial velocity be zero at
the duct wall at r = a. The ‘boundary condition” for the azimuthal wave function
is the requirement that the function will come back to its original value when the
angle is increased 27. This means that ky = m, where m is an integer. Actually,
the wave function in the ¢-direction could also be exp(Zi¢) in which case the wave
corresponds to a wave ‘spinning’ in the positive or negative ¢-direction. The radial
velocity u, is proportional to the derivative J,,,(kr) of J,, (k,r) and the possible values
of k., which we denote &, ,, are determined from the boundary condition u, = 0 at
r=a,ie.,

I’ (kpn@) = 0. (6.27)

For m = 0 the field is uniform in the circumferential direction the first solution to
this equation is kg ga = 0, which corresponds to the plane wave (fundamental mode).
The next solution is ko, 1@ = 3.8318 which represents a pressure mode with no nodes
in the circumferential direction and one node in the radial direction.
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Figure 6.2: Circular tube coordinates.

The mode (1,0) which has one nodal plane in the circumferential direction and no
nodes in the r-direction corresponds to the solution k1 ga = 1.8413. In general, the
mode (m, n)th pressure mode has m nodal planes in the circumferential direction
and n nodes (nodal cylinders) in the radial direction.

The mode (0,1) with no nodes in the circumferential direction but one nodal cylin-
der has its first cut-off at the wavelength Ag1 = 27a/3.83 ~ 1.64a = 0.83d. Going
across the duct along a diameter, we start from a maximum of the magnitude of the
pressure amplitude at the wall, then go through a pressure node, then another maxi-
mum at the center of the duct and then another node to finally return to a pressure
maximum at the opposite wall. The corresponding mode in the rectangular case has
the cut-off wavelength equal to 1.0d; which should be compared with 0.83d for the
circular duct. In this context, we note that the width of a square cross section with
the same area as the circular duct has a side 0.886d.

A few other values of k,,,a are

kooa = 0.0000 koja = 3.8318  kpoa = 7.0155
kipa = 1.8413 kjja = 5.3313  kjea = 8.5263 . (6.28)
kg()a = 3.0543 k21a = 6.7060 kQQCl = 9.9695

As for the rectangular duct, the propagation constant k, follows from the wave
equation and the analogue to Eq. 6.20 is

ke = \J(@/c)? = k2, = (@/c)y/1 = (@n.n/@)? = (@[c)*\/1 = W/ dmn)?, (6.29)

where Ay, = 27/kpy n. For example, A1 o = a27/1.8413 = 3.412a = 1.706d,
where d = 2a is the diameter of the tube. This mode has a pressure nodal plane
through the center of the duct with the pressure on one side being 180 degrees out
of phase with the pressure on the other side. The velocity amplitude is of course a
maximum in this plane and the mode can be regarded as the ‘sloshing’ of air back
and forth across the duct. This should be compared to the corresponding mode in
a rectangular duct with 210 = 2/d;1. Note that in the rectangular case the cut-off
wavelength is twice the width of the duct. In the circular duct it is somewhat smaller,
~ 1.7 times the diameter, which is expected since the circular tube is narrower on
the average.



186 ACOUSTICS

Figure 6.3: Annular duct with acoustically hard walls.

Annular Duct

In some applications, as in axial compressors and in aircraft bypass engines, noise is
transmitted through annular ducts.

The annular duct considered here is bounded by acoustically hard concentric cir-
cular cylinders with radii @ and b (Fig. 6.3). The sound field is periodic with respect
to the angular coordinate ¢, with the angular dependence of the complex pressure
amplitude being expressed by the factor exp(im¢) or by cos(m¢) or sin(me¢) or a
combination thereof, where m is a positive integer. The radial dependence can be
represented by a combination of Bessel functions J,, (k,r) or Y, (k.r) [corresponding
to cos(k,x) and sin(k, x)-functions] or by the Hankel functions H,, Ok, r) = Jp+iYm
and H,, @ (k,r) = J,, — iY,, of the first and second kind [corresponding to exp(ikyx)
and exp(—ik,x) in rectangular coordinates].

A wave mode py, p is alinear combination of these functions such that the boundary
conditions of zero radial velocity is fulfilled at » = a and r = b. There will be several
possible values for k, which are consistent with these conditions and we denote them
kr = Bm.n/a.

Thus, with 0 = a/b and kb = B, and 0 = b/a, the sound pressure field can
then be expressed as p(w) = Y pm,n, Where

P = U Ker) + R n Yon (k) e/ e €9
kxz = km,n2 = (a)/c)2 — (ﬁm,n/b)z. (630)

The quantities R, , and B, , are determined by the boundary condition mentioned
above. Since the radial velocity is proportional to dp/dr, these conditions can be
written

Jm/(lgm,n) + Rm,nle(IBm,n) =0
Jm/(U,Bm,n) + Rm,nYm/(Uﬂm,n) =0, (6.31)

where o = a/b. The prime indicates differentiation with respect to the argument.

The solutions for By, » and Ry, , for some different values of m, n, and o are given
in the following table.

It is interesting to compare these values of B,, , with those obtained from an ap-
proximate analysis of the problem. For a narrow annulus, for which the ratioo = a/b
is close to unity, we expect the wave field in the annulus to be approximately the same
as that between parallel walls separated a distanced = b —a. f weputy =r —a,
the walls are located at y = 0 and y = b — a. The average radius of the annulus is
ra = (b + a)/2 and the corresponding average circumference is 2rwr,. With z = r,¢
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we have in essence replaced the annular duct with a rectangular duct in which the
wave field is periodic in the z-direction with the period 27r,.

Annular duct
Solutions oy, , and Ry, from Eq. 1.2.9.

:Bm,n Rm,n
m n =0 025 0.5 0.75 0.25 0.50 0.75
1 0 1841 1.644 1354 1.146 —0.129 —-0.286 —0.367
1 5331 5.004 6.564 12.66 —0.327 2.578 1.390
2 8526 8.808 12.706 25.18 0.275 1.537 1.177
3 1171 1285 1894 37.73 2.160 1.324 1.115
2 0 3.054 3.009 2681 2292 —-0.029 —-0.221 —-0.391
1 6.706 6.357 7.062 12.82 —0.341 —-0.350 —0.361
2 9970 9.623 12.949 25258 —-0.351 —-0.222 —-0.635
3 13.17 1337 19.10 37.78 —0.201 —-0.431 -0.741
4 0 5318 5316 5.175 4.578 —0.001 —-0.080 —0.363
1 9282 9240 8836 1344 —0.038 —-0.418 0.881
2 1268 1244 13.89 25.58 —-0.235 0224 —0.014
3 1596 1550 19.74 38.99 —-0479 0582 —0.276
§ 0 9.648 9.647 9.638 9.109 0.000 —0.004 —0.245
1 1412 1412 138 15.71 0.000 —0.265 —4.318
2 1777 1777 1734 26.81 —0.001 —-0.405 —1.684
3 21.23 2121 22.14 38.83 —-0.015 1.119 2.446

The complex pressure amplitude in the duct then will be of the form
Pm,n X COS(ky)’) cos(kzz), (6.32)

whereky = nr/(b—a) = (1/b)br/(1—0) and k; = m2x /27r, = (1/b)2m/(1+ o),
where we have accounted for the fact that m and n in the labeling of the Bessel func-

tions refer to the angular and radial coordinates. Accordingly, k, =, /(w/c)? — k2, .

where

4m? nw
ko =ky + k7 = (1/19)2[ ]

0102 T0=0)

Comparison with Eq. 6.30 shows that the quantity within the bracket is the approx-
imate value of B2,

(6.33)

4m?2 (nm)?
2
~ . 6.34
Pun ™ T T =op (6.34)
For n = 0, which corresponds to a pressure field with no nodal circles in the
pressure amplitude within the annulus, we have 8,0 ~ 2m /(1 + ¢). With o = 0.75,
this expression yields 81,0 & 1.143 and Bs o & 9.143, which are within one percent of
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the values in the table. Similarly, with o = 0.5 we get B1,0 ~ 1.333 and Bs o ~ 10.67.
The first of these is within two percent and the second within ten percent of the values
in the tables.

For n > m and relatively large o, the simplified expression B, » ~ nw/(1 — o) is
a good approximation. For example, with n = 3 and ¢ = 0.75 this expression gives
Bm,3 & 37.70 which is in very good agreement with the tabulated results for m = 1
and m = 2.

6.2.2 Simple Experiment. Discussion

As we have seen, the sound wave in a duct with rigid walls can have many different
forms. The simplest is the fundamental wave mode in which the sound pressure is
uniform across the duct. It is the same field as in a plane wave in free field traveling
in the x-direction. We can imagine the wave in the duct as being generated by an
oscillating plane piston (approximated by loudspeaker) at the beginning of the duct.
This wave will travel unattenuated along the duct at all frequencies if we neglect the
visco-thermal effects. If the piston is simulated by the two loudspeakers in Fig. 6.4,
the speakers have to be driven in phase to generate the plane wave.

Loudspeakers (0, 0) mode

Oscillator Amplifier

Figure 6.4: Top: If the two loudspeakers operate in phase (push-push), a plane wave will be
generated. Bottom: If they are 180 degrees out of phase (push-pull), the (0,1) higher acoustic
mode will propagate if the frequency exceeds the cut-on frequency ¢/2D, where c is the sound
speed and D the duct width.

If the speakers are driven 180 degrees out of phase, however, so that one pushes
when the other pulls, the average axial velocity amplitude in the duct will be zero
and no plane wave is generated. There will still be a wave, but, unlike the plane
wave, the sound pressure distribution now depends strongly on frequency. The wave
components from the individual speakers travel out into the duct, one with a positive
and the other with a negative sound pressure. If there were no phase shift between
them, they would cancel each other. This is the case in the mid-plane of the duct
where the sound pressure indeed will be zero. However, at a point in the duct
not in the mid-plane between the speakers, there will be a source-to-receiver path
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difference so that the waves at the receiver are not completely out of phase. In fact, if
the difference is half a wavelength, the waves will arrive in phase so that constructive
interference results. We then get a wave that travels through the duct with a node
at the mid-plane and, unlike the fundamental mode, is characterized by zero average
oscillatory flow in the duct (the flows above and below the mid-plane are 180 degrees
out of phase). It is referred to as a higher order mode.

For such a mode to propagate through the duct without attenuation, the wave-
length must be short enough so that a path difference of half a wavelength can be
obtained. This corresponds to a frequency above the cut-off frequency. At frequen-
cies below the cut-off, however, the wavelength is so long that it is not possible to
get a path difference of half a wavelength and constructive interference. The path
length difference decreases with increasing distance from the source in the duct so
that destructive interference will be more pronounced with increasing distance as we
have seen from the exponential decay in Eq. 6.26.

The largest path difference is in the plane of the source, where it is the width D
of the duct (from the top of one speaker to the bottom of the other). Then, if D
is half a wavelength there will be constructive interference between the elementary
wave from the top of one speaker and the bottom of the other. The condition for
this ‘cut-on’ of the higher mode is A/2 = D and the corresponding frequency ¢/A,
for = ¢/2D is the cut-on frequency of the (1,0)-mode; as we have done above, it is
also called the ‘cut-off” frequency, the choice depending on from what direction the
frequency is approached, I suppose. At this frequency, the mode corresponds to a
standing wave perpendicular to the duct axis. The label (1,0) indicates that there is
one nodal plane perpendicular to the y-axis and to the z-axis. The plane wave is the
(0,0) mode.

Below the cut-on frequency, the mode decays exponentially with distance from the
source as mentioned above and shown in Eq. 6.26.

The arrangement in Fig. 6.4 is useful as a simple table top demonstration. To change
the speakers from in-phase to out-of-phase operation simply involves switching the
leads from the amplifier to the speakers, as indicated in the figure. In a particular
experiment, the duct height was D = 25 cm corresponding to a cut-on frequency of
684 Hz. With the speakers operating out-of-phase, increasing the frequency through
the cut-on value clearly produced a marked change in sound pressure emitted from
the duct which could readily be observed. The duct can be said to act like a high-pass
filter for the (0,1) mode.

Because of the wave decay below the cut-on frequency, the sound that radiates
from the end of the duct is feeble. It is due to what is left of the evanescent wave
when it reaches the end. Itis also possible that a weak plane wave component may be
present because of an unavoidable difference in the speakers so that their amplitudes
are not exactly the same; the average velocity over the total source surface then is not
exactly zero. In any event, if one of the speakers is turned off, a substantial increase
in sound pressure is observed (because of the plane wave which is now generated by
the remaining speaker).

Thus, in this demonstration, one speaker cancels the sound from the other, so
that two speakers produces less sound than one. It demonstrates what is commonly
referred to as active noise control in which sound is used to cancel sound. The term
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‘anti-sound” has been used to designate the contribution from the source that cancels
out the primary sound.

If the frequency is increased above the cut-on frequency, a marked increase in
the sound level from the end of the tube is observed because of the propagating
(1,0)-mode.

The wave field in the duct can be thought of as a superposition of plane waves
being reflected from the duct walls. At the cut-on frequency these waves are normal
to the axis of the duct, but at a higher frequency the angle ¢ with the axis is given
by sing = (1/2)/D. There will still be a nodal mid-plane in and the mode is still
referred to as a (1,0)-mode. The phase velocity of this mode will be the speed of the
intersection point of a wave front with the boundary (or the axis) and this speed is
c/sin ¢, i.e., greater than the free field sound speed and the (0,0)-mode in the duct.

Thus, if a plane wave and a higher mode are both present in a duct, the resulting
wave field will vary with position because of the difference in wave speeds.

Similar arguments show that if the wavelength is smaller than D/2n, where n is
an integer, a mode, the (n,0)-mode, with n nodal planes and a cut-on frequency
fn.0 = nfi0, can propagate and the wave field in the duct can be regarded as a
superposition of plane waves which are reflected back and forth between the bound-
aries and traveling in a direction which makes an angle ¢ with the duct axis, where
sing = A/(2nD). The phase velocity of a higher mode is always greater than the
sound speed in free field and, like the angle ¢, it is frequency dependent.

6.2.3 Sound Radiation into a Duct from a Piston
Piston in an End Wall

After having introduced higher modes through the experiment illustrated in Fig. 6.4
we consider now the radiation from a single piston source in the wall at the beginning
of a duct. For details of the mathematical analysis we refer to Section A.3 and present
here only a summary of the results.

As before, we let the x-axis be along the duct and place the source in a acoustically
hard baffle wall at x = 0. By a piston source we shall mean a source with a specified
distribution of the axial velocity across the duct. Harmonic time dependence will be
assumed unless stated otherwise.

In the special case of a piston source with uniform velocity amplitude covering the
entire duct area, only a plane wave will be generated. However, if the piston covers
only a portion of the duct area or if the velocity distribution is non-uniform additional
modes will be generated. At frequencies below the lowest cut-off frequency of the
higher modes, these modes will decay exponentially with distance from the source,
as discussed in the previous section, and sufficiently far from the source, the plane
wave becomes dominant.

The coupling between the source and a particular mode depends on the degree of
‘overlap’ of the axial velocity distributions of the source and the mode. Quantitatively,
the overlap is expressed in terms of the amplitude coefficient of the mode in a series
expansion of the source distribution in terms of the duct modes. For example, in an
acoustically hard duct, only the plane wave mode will have an average value of the
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velocity amplitude across the duct, and this average value must be the same as that
of the source. If the average source velocity amplitude is zero, the amplitude of the
plane wave will also be zero as was the case in the bottom example in Fig. 6.4.

A piston with an area A, and a uniform velocity amplitude u, will have an average
velocity amplitude ug = (A,/A)u,, where A is the duct area, and this must equal
the velocity in the plane wave mode. Thus, the complex pressure amplitude of the
plane wave will be

po = pc(Ap/A)u e, (6.35)

where k = w/c.

The acoustic power carried by the plane wave component is A|poug|/2. The
corresponding radiation resistance r of the piston must be such that the same power
is generated by the piston. This poweris A ,r|u, /2 and we get

r=pc(Ap/A). (6.36)

At frequencies below the first cut-off frequency of the higher modes, this is the
only contribution to the radiation resistance. The higher modes are evanescent and
contribute only a mass reactive component to the radiation impedance of the piston,
as discussed below.

As the frequency increases, one higher mode after the other will be ‘cut-on” and
carry energy and thus contribute to the radiation resistance. Actually, if we neglect
visco-thermal and other losses, linear acoustic theory indicates that if the amplitude
of the piston velocity is independent of frequency, this resistance contribution goes
to infinity as the frequency approaches a cut-off frequency. The direction of the fluid
velocity oscillations in the corresponding mode is then nearly perpendicular to the
axis of the duct, and in order to get an axial velocity component to match that of the
source, a very high sound pressure amplitude will be required. This translates into a
high radiation resistance as well as reactance in the vicinity of cut-off.

Beyond the cut-off frequency the higher mode involved will be cut-on to carry
energy and contribute to the radiation resistance of the piston. The resistance starts
out at infinity at cut-off and then decreases monotonically with frequency. This
behavior is repeated for each mode. Normally, the amplitudes of the higher modes
decrease with the mode number so that the fluctuation of the total resistance when
more than three modes are cut on becomes small. In this high frequency limit, the
modes in the duct combine to form a beam of radiation with a cross section equal to
that of the piston and the specific resistance of the piston approaches pc.

A higher mode also contributes a mass load on the piston. This can be seen from the
formal solution, as demonstrated in Section A.3, but can be understood qualitatively
also from kinetic energy considerations as follows.

If |u/| =, /u’i + u’% + u’f is the magnitude of the velocity in a higher mode below

cut-off, the kinetic energy is (p/2) [ |u'|2dV , where V is the volume of the tube.
Since the wave field decays exponentially with distance, the integral will be finite
and if we express the corresponding kinetic energy as (1/2) M u?,, we have defined
the equivalent mass load M on the piston, where u, is the velocity amplitude of
the piston. The velocity u” is proportional to u, and M will be independent of u .
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For harmonic time dependence, the corresponding force amplitude on the piston is
—iwMu,, and the normalized reactance is

X = —ioM/A,pc = —iks, (2.1.3)

where k = w/c. The quantity § = M /A, p can be thought of as the length of an air
column which has the same mass reactance per unit area as the radiation reactance
of the piston. A similar mass load also occurs at the end of an open duct or pipe and
in that case 8 is usually referred to as an ‘end correction,” and this designation will be
used here also.

The mass load contributed by a higher mode increases monotonically with fre-
quency and theoretically goes to infinity at the cut-off frequency (for an infinitely long
duct) and then decreases monotonically to zero when the sound field has become a
beam. For a finite duct, the calculation of the radiation impedance must include the
reflected waves from the end of the duct, for both propagating and evanescent waves.

The normalized radiation impedance of the piston at frequencies below the first
cut-off frequency can be written

¢ = p(0, w)/pcu, = (A,/A) — iks, (6.37)

where, as before, k = w/c.

The calculation of § requires knowledge of the higher order mode field, and such a
calculation is done in Section A.3 at wavelengths much larger than the cross-sectional
dimensions of the duct so the low-frequency limit value of 8 can be used. Then §
depends only on the dimensions of the piston and the duct but not on frequency. In
a more detailed analysis the frequency dependence of § must be accounted for in
accordance with the discussion above.

In Fig. 6.5 are shown the results of the calculations in Section A.3 of the low-
frequency value of the end correction § for square and circular pistons and it is
normalized with respect to \/A_ , where A, is the piston area. We note that for a
circular piston in a circular duct, or a square piston in a square duct, § goes to zero as
the piston area approaches the duct area, as expected. In this limit, as we have seen,
only the plane wave mode is generated and there is only a resistive contribution to the
impedance. In the other limit, when the piston area goes to zero, &/ \/A_‘,, ~ 0.48. For
a circular piston with a radius r,, this means that § ~ 0.85r,,. This is consistent with
the exact value (8/3m)r, for a circular piston in an infinite acoustically hard baffle in
free field, discussed in Section 5.3.5.

In this context it is of interest to compare this end correction with that of a pulsating
sphere of radius a. If the velocity amplitude of the surface of the sphere is u ), and we
treat the fluid as incompressible, the radial velocity at a distance r will be (a/ r2u »
and the kinetic energy (o/2) faoo w4 rldr = (,014%,/2)(471612 a). The equivalent
mass load per unit area of the sphere is then pa which can be interpreted as that of
an air layer of thickness § = a.

Piston in a Side Wall

See Appendix A.
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Figure 6.5: The mass end correction § piston sources in tubes, plotted here as §/,/Ap vs
d/D, where A is the piston area, d the piston width, and D, the duct width. The curves (2)
and (3) are too close to be separable in the figure.

6.3 Lined Ducts

Sound propagation in lined ducts has become an important engineering problem and
has been the subject of specialized texts and we shall limit the discussion here only
to a review of the essentials.

The noise source involved is often the fan that drives air through the duct or it can
be the ambient noise at one end of the duct. One way to achieve noise reduction is
to line the duct with sound absorptive material.

We start with an approximate analysis of attenuation based on energy considera-
tions. Thus, if the acoustic power through the duct at a location x is IT(x) and the
power absorbed per unit length by the boundary is assumed to be aI1(x), energy
conservation requires that

dll/dx = —all(x), (6.38)

which yields an exponential decay of the power, IT(x) = IT1(0) exp(—ax).

The assumption that the absorption per unit length is proportional to the power
through the duct is justified if a couple of assumptions are made regarding the sound
pressure field. If the sound pressure is assumed uniform across the duct and the wave
impedance in the duct is assumed to be the same as in free field, the power in the
duct will be IT = Ap?/pc, where p is the rms value. Furthermore, if all the walls in
the duct are treated with a locally reacting liner (see Chapter 4) with a normalized
conductance (real part of the admittance) u, the power absorbed per unit area of the
duct wall is p2u/pc (see Eq. 4.44). If the treated perimeter of the duct wall is S, the
corresponding absorption per unit length of the duct becomes Sp2u/pc which can
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be written (Su/A)I1. In other words, the coefficientin Eq. 6.38is o = (Su/A). The
attenuation in dB in a length x of the duct is then

101og[ p2(0)/ p2(x)] = 101og(e) (Siu/A) x ~ 4.36(Su/A)x  dB. (6.39)

On these assumptions, this expression for the attenuation is valid for any shape of
the duct. For a circular duct of diameter D and with the entire perimeter treated,
we have S = 7D, A = nD?/4 and S/A = 4/D, so that the attenuation becomes
~ 17.4u(x/D) dB.

This is all very well and simple were it not for the assumptions made. Although
they are normally valid at sufficiently low frequencies, the pressure distribution across
the duct tends to become nonuniform with increasing frequency. Actually, for a
higher order mode, the sound pressure at the boundary goes to zero with increasing
frequency in much the same way as in free field reflection of a plane wave from a plane
boundary. As grazing incidence is approached (angle of incidence going to 7 /2), the
pressure reflection coefficient goes to —1, as can be seen from Eq. 4.50. This makes
the sum of the incidence and reflected pressure at the boundary equal to zero.

This qualitative explanation is not applicable to the fundamental mode, however,
since it cannot be described as the superposition of waves being reflected back and
forth between the walls of the duct. The role of the boundary is now expressed
in terms of its effect on the average compressibility of the air in the duct. At low
frequencies, the pressure is almost uniform across the duct and the pumping in and
out of the boundary results in an average complex compressibility, much like a spring
in paralle] with a dashpot damper. For a duct of width D1, lined on one side where
the normalized admittance is 7, it is shown in Example 45 in Chapter 11 that the
average complex compressibility in the channel is

i =k(l+in/kDy). (6.40)

It goes to the normal isentropic (real) value k¥ = 1/ pc? as the frequency increases,
kD1 >> 1, and the corresponding attenuation goes to zero. The conditionkDq >> 1
can be written D1/A >> 1 where A is the (free field) wavelength. In other words, as
the wavelength becomes much smaller than the width of the channel the presence of
the liner will be “felt’ less and less by the wave in the channel and eventually approaches
free field conditions. In this manner, also the attenuation of the fundamental mode
approaches zero with increasing frequency. The interaction with the boundary can
also be thought of as a relaxation effect with the complex compressibility expressed
as K = k(1 + in/wt), where the relaxation time t = D /c is the time of wave travel
across the duct.

At the other end of the spectrum, with the frequency going to zero, the pressure
typically becomes approximately uniform but the conductance u typically goes to
zero. The attenuation, being proportional to the product of p and the mean square
pressure at the boundary, then goes to zero; in other words, there will be essentially
no absorption by the boundary in both the low- and high-frequency limits and the
frequency dependence of the attenuation is expected to be bell shaped.
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6.3.1 Attenuation Spectra

The qualitative discussion of attenuation above is indeed consistent with the results
of a detailed mathematical analysis as demonstrated by the computed attenuation
curves in Figs. 6.6 and 6.7.

Fig. 6.6 refers to a rectangular duct with one side much longer than the other
and with one of the long sides lined with a uniform porous layer; Fig. 6.7 shows the
attenuation in a fully lined circular duct.

These results were obtained by solving the wave equation subject to the boundary
conditions at the walls of the duct. To illustrate the procedure, we consider the duct
on the top left in Fig. 6.8. It refers to a rectangular duct with one side lined with a
locally reacting liner. The results obtained can be used for the fundamental acoustic
modes in any of the acoustically equivalent duct configurations shown in the figure.

The x-axis is placed along the length of the duct. The plane of the surface of the
liner is at y = D1 and the opposite unlined wall is at y = 0. The two other unlined
walls are at z = 0 and z = Ds at which the normal velocity is zero (acoustically hard
walls). The wave field will be of the same form as in Eq. 6.19. With the walls placed
at y = 0 and z = 0 the wave functions expressing the y- and z-dependence of the
field are expressed by cos(kyy) and cos(k;z). The corresponding velocity fields, being
proportional to the gradients of pressure, are then o sin(kyy) and o< sin(k;z) and
automatically satisfy the boundary conditions of being zero at the acoustically hard
walls y =0and z = 0.

The factors ky and k; are determined by the boundary conditions at the walls
aty = D1 and z = Dy. With the wall at z = Dy being acoustically hard, we
must have sin(k; D2) = 0 which means k; = nw/Ds, where n is an integer. At the
lined wall at y = Dj the admittance is given and if its normalized value is denoted
n, the boundary condition requires that u,/p = 1/(pcn). From the momentum
equation (—iwp)u, = —dp/dy, itfollows thatu, = |p|(ik,/wp) sin(k, D1), where we
have used p = | p| cos(kyy), and the boundary condition then imposes the following
condition on ky,

(ky Dy) tan(ky Dy) = —ik D11, (6.41)

where k = w/c. The admittance is complex, and this equation for k, generally has to
be solved numerically. At low frequencies, such that kD1 << 1, the left-hand side
can be approximated by (k, D1)2, in which case

(kyD1)* ~ —ikD1n. (6.42)

It follows from the wave equation that k2 + k% + k? = (w/c)?, ie.,

ke = J(@/0)2 — k2 — k2. (6.43)

With k; = nm/Ds, the mode that has a uniform pressure in the z-direction corre-

sponds to n = 0 which yields
ky = 1/(a)/c)2 — k%. (6.44)
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Figure 6.6: Attenuation of the fundamental mode (in dB per unit length equal to the channel
width Dj) in a rectangular duct with one side lined with a locally reacting rigid porous layer
with a total normalized flow resistance © (2, 4,..32). Liner thickness: d. Fraction open area
D1 /(D1 +d) = 20to 70%. The results can be used with two opposite walls lined with identical
liners if the channel width (distance between liners) is 2D .
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0.15, respectively.
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Figure 6.8: Equivalent duct configuration which yields the same attenuation for the funda-
mental acoustic mode.

With ky, = k, + ik;, the x-dependence of the complex pressure amplitude is given
by
p(x, w) = p(0, w)e ki ot (6.45)

If the time dependence of the pressure at x = 0 is | p| cos(wt), we get
p(x, 1) = |ple "* cos(wt — kyx). (6.46)

In other words, the imaginary part of the propagation constant determines the
exponential decay of the sound pressure so that the attenuation in dB in a distance x
is

20log(|p(0)|/1p(x)]) = 20log(e) kix ~ 8.72k;x. (6.47)

The real part determines the phase velocity ¢, = w/k,. In a coordinate frame
moving with this velocity, the phase (wf — k,x) remains constant.
In the low-frequency approximation, with &, given by Eq. 6.42, we get

ky ~ \/(w/c)?2 +ink/D1 = (w/c)y/1+in/kDy, (6.48)

where, as before, k = (w/c). For a porous liner, the frequency dependence of 7 is
such that at sufficiently low {requencies /kD; << 1. In that case, expanding the
radical to first order in 7, the corresponding approximation is

ke ~ (w/c) + (1/2)in/D;. (6.49)

It is left as a problem to show that the attenuation obtained in this approximation is
the same as that in Eq. 6.39.
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Wave Impedance of the Duct

One of the approximations made in the derivation of Eq. 6.39 is that the wave
impedance of the duct is the same as in free field, i.e., pc. We are now in a po-
sition to determine the actual value of the wave impedance p/uy, where p and uy
are the complex amplitudes of pressure and axial velocity in a traveling wave. With

uy = (1/iwp)dp/dx = pky/wp (6.50)
the normalized value for the wave impedance and admittance becomes

1 1
ty= —=—F — sk, (6.51)
Nw pPC Ux

where k = w/c. With reference to the discussion of Eq. 6.48, we note that for a porous
liner k, ~ k at low frequencies which is consistent with the assumption contained in
Eq. 6.39.

Since the imaginary part of ky is positive, it follows that the reactive part of the
wave impedance is negative, i.e., mass-like. Physically, this is due to a transverse
component of the fluid velocity in the duct; for a given axial velocity amplitude, the
kinetic energy per unit length when expressed as p.u2 /2 requires that the equivalent
inertial mass density p, will be larger than p when the kinetic energy contribution
from the transverse velocity is accounted for.

6.3.2 Problem

1. Low-frequency approximation of attenuation

Show that the low-frequency attenuation resulting from Eq. 6.49 is consistent with the
result in Eq. 6.39






Chapter 7

Flow-induced Sound
and Instabilities

7.1 Introduction

The term aero-acoustics has come to mean the part of acoustics which deals with
problems encountered in aerodynamics, for example, sound generation by flow and by
devices such as fans and compressors. Sometimes the term ‘aero-thermo-acoustics’
is used to indicate that also acoustical problems related to heat release and other
thermal effects are included.

The second part in the title of this chapter, instabilities, indicates that we are going
to treat problems which result from the intrinsic instability of fluid flow. It means
that oscillations (and sound) can be produced without any external oscillatory driving
force, but merely as a result of the flow breaking into spontaneous oscillations. The
sound or vibrations produced as a result can feed back on the flow and promote or
stimulate the instability so that the amplitude will grow exponentially with time until
some damping mechanism eventually limits the amplitude. Such vibrations often
cause mechanical (acoustic fatigue) failure.

In regard to sound generation, in general, we have considered so far mainly vibrat-
ing boundaries or piston sources producing density fluctuations and corresponding
pressure fluctuations. In the case of a pulsating sphere, for example, the acoustic
flow source strength, the rate of mass transfer to the surrounding fluid, was denoted
gy and the corresponding acoustic source by ¢ = g5 (or g(w) = —iwqgs(w) for
harmonic time dependence). The oscillating acoustically compact sphere was found
to be equivalent to a point force acting on the fluid. Corresponding continuous dis-
tributions were denoted Q and F per unit volume as ‘drivers’ in the acoustic wave
equation (5.36). It was pointed out that a heat transfer H per unit volume is equiva-
lent to a mass flow source Q¢ = (y —1)H/ 2 as far as sound generation is concerned.
Through this equivalence, sound generation by sparks, combustion, lightning, etc.,
can be analyzed mathematically. The acoustic source Q and the force F' densities
were found to be monopole and dipole densities, respectively.

An acoustic mass flow source can be obtained directly, without a pulsating sphere,
by modulation of flow from an external source. In a siren, puffs of air are produced
when flow is forced through the holes in a disk which are periodically blocked by a
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rotating disk with a similar hole pattern. In speech, the sound is produced by the
flow from the lungs through the vocal chords and the vocal tract; in this case the
modulation of the flow is caused by moving boundaries.

Even in the absence of moving boundaries, sound can be produced by flow. The
reason is that fluid flow is generally unstable which results in the time dependence of
the velocity required for sound generation. The frequency of oscillation is then not
imposed by a moving boundary as in the siren or vocal tract but is a characteristic of
the flow itself; the frequency is then typically proportional to the flow velocity.

Then, if a flow generated sound source is of the monopole type, with the sound
pressure being proportional to g ¢, it will be proportional to wU where U is the flow
velocity in a frequency band centered at . Then, with @ being proportional to U,
it follows that the sound pressure will be proportional to U 2 and the radiated power
to U*. Similarly, we find in analogous manner that if the source is of the dipole type,
the power will be proportional to U and if it is of the quadrupole type, to US. As we
shall see, the latter applies to a region of uniform turbulence.

If the flow interacts with acoustic or mechanical resonators, the velocity depen-
dence of the acoustic power output given in the previous paragraph can be drastically
modified as indicated earlier.

In preparation for our study of these problems, we present some notes on the
instability of a vortex sheet and the interaction of fluid flow with a solid boundary
including the characteristics of drag and wake formation behind a blunt body. On
this basis, a classification of flow-induced instabilities is proposed and examples are
discussed. For example, both mechanically and acoustically stimulated vortex streets
behind cylinders are considered with application to heat exchangers, for example.
Similarly, orifice and pipe tones are analyzed and experimental data are presented and
discussed. An example of the often encountered whistle produced by flow through
perforated plates in industrial dryers is given.

Valve and seal instabilities in fluid machinery are potential sources of mechanical
failure and they are given due attention. The same applies to the problems of flow
excited side-branch resonators and conduits in ducts. A unique feature is the mode-
coupling between resonator and duct modes and between different resonator modes.
Another aspect of the problem deals with the characteristics of slanted side branch
tubes and the effect of flow direction on the excitation of pipe modes.

7.2 Fluid-Solid Body Interaction

7.2.1 Boundary Layers and Drag

The potential inviscid flow about a sphere is completely symmetrical on the upstream
and downstream sides, as indicated in Fig. 7.1, and the same applies to the pressure
distribution over the surface of the sphere. As a result, there is no net change in the
momentum flux in the fluid resulting from the interaction and no drag force on the
sphere. Although the idealization of an inviscid fluid leads to flow fields in relatively
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good agreement with experiments in regions away from boundaries, the prediction
of zero drag force is unrealistic.

The assumption of inviscid fluids leads to other unsatisfactory results. For example,
the computed flow velocity frequently becomes infinite, as is the case at sharp corners
ofasolid object or at the sharp edge of an orifice. Inclusion of viscosity eliminates these
mathematical deficiencies, however. In macroscopic description of fluid motion, the
tangential flow velocity at a rigid boundary will be zero but it increases to the ‘free
stream’ value Uy (which in most cases can be taken to be the value obtained for an
inviscid fluid) in a (thin) viscous boundary layer. It can be thought of also as a layer
of vorticity with a vorticity dU/dy, where y is the coordinate perpendicular to the
boundary.

The force on an object in laminar viscous flow with a constant unperturbed velocity
Uy, depends on Uy, the area A of the object that obstructs the flow, and the coefficient
of shear viscosity of the fluid. The viscous stress (force per unit area) in shear flow
is given by ndu,/dy ~ uUy/D, where the velocity gradient has been expressed as
Uo/D, where D is a characteristic dimension of the object. The ‘dynamic’ stress
(momentum flux) in the fluid is of the order of pUg. The ratio of this and the viscous
stress is of the order of

R = pUpD/p = DUy/v, (7.1)

which is called the Reynolds number. The Quantity v = u/p is the coefficient of
kinematic viscosity. 1t is, loosely speaking, and in resonator terminology, a kind of
Q-value of the fluid with the inverse being a damping factor.

The calculation of the drag force on an abject in fluid flow is complex and normally
has to be done numerically. From dimensional considerations it follows, however,
that the dependence of the force on the variables involved will be of the form

f=C(R, M)(pU3/2) A, (7.2)

where Uy is the (free stream) fluid velocity and A a characteristic area of the object
(usually the projection normal to the flow). C is then a dimensionless constant called
the drag coefficient, which generally is a function of all variables involved; the com-
bination of the variables must be dimensionless in order for C to be dimensionless.
Thus, the variable which contains the viscosity is the Reynolds number R = LUpp/ .,
where L is the characteristic length of the object. For a compressible fluid, also the
compressibility enters and one way of introducing it in dimensionless form is through
the Mach number M = Uy/c, where c is the sound speed. For small Mach numbers,
it is often a good approximation to treat the flow as incompressible. The quantity
pUg /2 is the dynamic pressure of the flow and Py + ,oU(? /2, the stagnation pressure
(Po is the static pressure in the free stream).

Eq. 7.2 can be thought of as a scaling law, and with the Reynolds number kept
constant, experimental results on a model in air can be used for the prediction of
the interaction force on a body in water or some other fluid or in air at some other
condition (pressure and temperature) than in the test.
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Sphere. Stokes Law

To calculate the viscous drag force on a sphere in an incompressible fluid, we have
to solve the Navier Stokes equation, which, for incompressible flow (V - U = 0),
becomes

-

p% = —grad P + uviU (7.3)
Dt
subject to the condition that the velocity be zero on the surface of the sphere and equal
to the free stream velocity at infinity. The quantity u is the coefficient of viscosity.
The solution is complicated and beyond the present scope. Instead, we shall make
an estimate of the force as follows.

The last term in Eq. 7.3 is the viscous force per unit volume. The radius of the
sphere is the characteristic length and the order of magnitude of this forceis oc U/ a’.
The characteristic volume is the volume of the sphere o a®, and the total drag force
on the sphere will be f o« naU. For sufficiently small velocities corresponding to
Reynolds number less than 1, the constant of proportionality can be shown to be 67
resulting in

Viscous drag force on a sphere (7.4)
f =6mual ’

[mu: Coefficient of shear viscosity. U: Free stream velocity. a: Sphere radius].

It is often called the Stokes force on the sphere. It may be familiar to some read-
ers from elementary physics laboratory in the Millikan oil drop experiment for the
determination of the electron charge.

It may seem surprising at first that the drag force is proportional to the radius
of the sphere rather than to the surface area, since the viscous force acts along the
surface. It should be realized, however, that the force is not only proportional to
the area but also to the velocity gradient. If we normalize the velocity with respect
to the free stream velocity Uy and put U’ = U/Uy and r’ = r/a, the gradient is
dU/dr = (Uy/a)dU’/dr’. Multiplication by the surface area thus yields a drag force
proportional to the radius.

In terms of the Reynolds number R = DU /v, based on the diameter D = 2a of
the sphere, where v =/ p is the kinematic coefficient of viscosity, the corresponding
drag coefficient (Eq. 7.2) is

C(R) = 24/R (sphere, viscous drag, R < 1), (7.5)

where R = UyD /v, based on the diameter D = 2a of the sphere.

It is an experimental fact that above a certain Reynolds number, R & 100, the
flow starts to separate from the boundary of the sphere, as indicated schematically
in Fig. 7.1 and starts out as a (circular) vortex sheet behind the sphere. This vortex
sheet is unstable, as will be demonstrated shortly, and the flow becomes turbulent,
eventually filling up the wake behind the body, as indicated schematically in the figure.

Flow separation in (b) in Fig. 7.1 results in an increase in the drag force f on
the sphere, and the velocity dependence of f goes from the Stokes law f o U to
approximately f oc U 2 for large values of R. The corresponding dependence of the



FLOW-INDUCED SOUND AND INSTABILITIES 205

R<1 R = 10°

Figure 7.1: Flow interaction with a sphere. (a). Laminar flow. (b). Laminar boundary layer
and flow separation. (c). Turbulent boundary layer.
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Figure 7.2: Drag coefficient C of a sphere versus the Reynolds number R. For comparison is
shown (dashed line) the coefficient which corresponds to viscous drag, C = 24/R.

drag coefficient on the Reynolds number goes from C(R) o 1/R to C(R) ~constant
as shown in Fig. 7.2,

For values of R between 2 x 10° to 5 x 10°, an interesting phenomenon occurs,
sometimes called the drag crisis. The drag coefficient drops sharply from about 0.4 to
about 0.15, and this drop occurs over such a small range of velocity that the actual
drag force decreases with increasing velocity, which can be a source of instability.
This effect has been found to be a result of a transition in the boundary layer on
the upstream side of the sphere from laminar to turbulent, as indicated in (c) in
Fig. 7.1. This, in turn, moves the flow separation point in the downstream direction,
and the cross-sectional area of the wake and the drag force behind the sphere are
both reduced. A further increase of R beyond this range restores the drag coefficient
to an approximately constant value of 0.2 with the corresponding drag force being
proportional to U 2,

The flow can be tripped by an irregularity in the surface of the sphere to make the
boundary turbulent at lower Reynolds number than that given above for a smooth
surface. This results in a reduced drag. A familiar application of this principle is the

golf ball provided with dimples for the purpose of drag reduction.
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7.2.2 Model of a Porous Material; Lattice of Spheres

The acoustic interaction with a sphere in the presence of a mean flow leads to two
resistive components, one due to the viscous drag on the sphere and the other due
to the acoustic modulation of the turbulent wake. If the velocity amplitude of the
incident wave is u, the viscous contribution to the acoustic drag force amplitude is
6 nau. The acoustic modulation of the turbulent drag force is C pra[(Uy + u)? —
Ug ~ C2pUguma?, where C is the drag coefficient.

Thus, if the cubical cell of a lattice of spheres has the volume L3, there will be
N = 1/L3 spheres per unit volume and if the spheres are sufficiently far apart so
that the expression for the drag force on a sphere in the lattice can be taken to be
the same as for a single sphere in free field, the flow resistance per unit length in this
model of a ‘porous material” becomes

r = N(6rpa + C2pUyma>) = 2pUym(a® /L) (C + 3/R), (7.6)

where R = Upa/v is the Reynolds number. The first term, the drag coefficient C, is
of the order of unity in the turbulent regime.

Fig. 7.2 shows that the turbulent regime is not fully developed unless R exceeds
1000, approximately, and this means that when turbulent wakes are present, the
acoustic flow resistance is dominated by the sound-flow interaction, represented by
the first term in Eq. 7.6.

The induced mass of the oscillatory flow about a sphere is known to equal half of
the mass of the fluid displaced by the sphere. Thus, the induced mass per unit volume
of the lattice of spheres becomes p; = N (2ma’/3)p. The equivalent mass density is
e = p+ pi = (14 G)p, where the induced mass factor is G = p;/p. The structure
factor (see Chapter4) I' = p./p = 1 + G becomes

=1+ %”(a/L)S). (7.7)

This model of a porous material can be used to calculate approximately the prop-
agation constant for sound in rain, fog, or suspension of particles. As an industrial
application, the measurement of the attenuation has been used as a means of moni-
toring the density of coal powder in furnaces.

7.3 Flow Noise

7.3.1 Sound from Flow-Solid Body Interaction

The second sound generator in Eq. 5.9 refers to a time dependent force on the fluid.
For a concentrated force f(r), we found that the sound pressure a distance r from
the source could be expressed as

p(r,t) = (1/4mre) f(t —r/c) cos ¢, (7.8)

where ¢ is the angular position of the observation point as measured from the direction
of the force.
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Of particular interest here are flow-induced force fluctuations. At sufficiently high
flow speeds, the drag coefficient, typically is of the order of unity. For air, the kinematic
viscosity is v & 0.15 CGS at 1 atm and 70°F , and for water v ~ 0.01 CGS.

If the flow is turbulent, the velocity U is not constant. The time dependence is
normally a result of irregularities in the flow (‘eddies’). A model of a frozen’ pattern
of flow irregularities being convected by the mean flow is often approximately valid.
The spatial variation of the irregularities can be represented by a spectral distribution
of eddies.

If the velocity fluctuation caused by an eddy is U’, the variation of the interaction
force on the body will be f; = Cp/2[(U + U2 — U2 ~ CpU'U. If the eddy
size is A, the frequency of the fluctuation will be v = U/A and £ in Eq. 7.8 will be
f o 27pU' U2/ A. Normally, the velocity fluctuation is proportional to the mean flow
velocity, U' = BU, and, with C ~ 1, the expression for the radiated sound pressure
in Eq. 7.8 will be of the form

CAB
4dwrcA

CAB ngP

U3/2) = Ly
U2 = oA M3

p(r,t) x (7.9)
where C, the drag coefficient, is of the order of unity, M = U/c is the Mach number
of the mean flow, 8 = U’/ U, A, the eddy size, and A, the projected area of the body.
In the ldSt step in this equation, we have expressed the speed of sound asc = /y P/p,
i.e., pc® = y P, where P is the static pressure and y the specific heat ratio (= 1.4 for
air). In this manner, the sound pressure is expressed in terms of the static pressure
and the Mach number of the mean flow. With Py being the ambient pressure, the
quantity Py + pU?/2 is the stagnation pressure of the flow. With M = U /¢, we note
that the radiated sound pressure is proportional to the third power of the mean flow
velocity. The corresponding radiated acoustic power is then proportional to the sixth
power of the velocity.

The Aeolian Tone

Even if the incident flow is uniform and steady, the interaction of this flow with a
solid body can lead to a time dependent force on the object and a related emission
of sound. Such is the case in the interaction of flow with a cylinder. The wake
behind the cylinder turns out to be oscillatory over a wide range of flow velocities
(K4rmdan vortex street) and this in turn results in sound emission, the Aeolian tone
with a corresponding fluctuating force on the cylinder and sound emission. This
phenomenon is discussed in some detail in Chapter 10.

Sound Generation by a Fan

It is the relative motion of the fluid and the solid body which is relevant as far as the
interaction force is concerned and in a device such as a fan this relative motion is
dominated by the speed of the fan blades. In this case, fluid motion is induced so that
both the solid body and the fluid are in motion. This is such an important example of
sound generation by flow-solid body interaction that the entire book could have been
devoted to this subject. A brief account is presented in Chapter 8.
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7.3.2 Noise from Turbulence

The generator of sound in a region of turbulence with no flow injection of mass flow or
momentum (no external force) can have no net monopole or dipole source strength.

This does not mean that local pressure fluctuations are absent throughout the
turbulent flow; it merely means that the average over the entire region will be zero.
A local pressure fluctuation over a region of size a (‘eddy’ size) in the turbulent
flow will be of the order of pU'?, where, as before, U’ is the velocity perturbation.
Actually, in this case, we shall assume that there is no mean flow, so U’ is the actual
local Velocity.1 We recall that a pulsating sphere with a pressure p(a) at the surface
produced a pressure field p(r) = (a/r) p(a) exp(ikr) and, similarly, a local pressure
fluctuation in the flow can be represented by a local monopole which will generate
an elementary sound wave contribution with a pressure of the form pg o (a/r)pU"
(see Eq. 5.17).

We consider here a control volume of the flow large enough to include a large
number of eddies with a characteristic size a assumed small compared to the wave-
length of the radiated sound. If a fluctuation in density or momentum is positive at
one location, there will be a corresponding negative fluctuation in the vicinity, con-
sistent with the observation that there is no net mass flow into the control region.
The time dependence is random but if we consider a small frequency band at the
frequency w and a corresponding period 7', the period will be of the order of a/U’,
where U’ now stands for the velocity fluctuation in that frequency band. Were it not
for the spatial separation of these adjacent pressure pulsations and the correspond-
ing difference in time of wave travel to the point of observation, the pressure waves
would cancel each other. The travel time difference is of the order of a/c and if we
consider the harmonic component of the fluctuation at the frequency w, the sum of
the pressure contributions will be that of a dipole with the pressure (ka cos ¢) po (see
Eq. 5.43) where py is the pressure from the single pressure fluctuation (monopole)
and ka = w/c, which is proportional to U’

Since the dipole is equivalent to a force distribution as discussed in Section 5.3.1
and since there is no net force on the region considered, the net dipole moment
must be zero. Thus, for each elementary dipole there will be one equal and opposite
with a separation of the order of a, the eddy size. The combination of the two yields
a quadrupole, as shown in Section 5.3.4, with a pressure field obtained from the
dipole field by multiplying by the factor o« ka cos¢. Following the arguments in
that section, the far field pressure from the quadrupole pressure field will then be
o« (U'/c)? (a/r) pU".

We no longer can proceed in the same manner as for the monopoles and dipoles to
require the quadrupoles to occur in pairs, since we have no stipulation similar to those
of zero mass and momentum transfer to the turbulent region. Thus, we conclude that
the lowest order equivalent multipole of the turbulent region will be a quadrupole.

The intensity from an elementary quadrupole volume element in the flow becomes

Iy o (p3/pe) = (1/pe) M™ (a/r)* (pU ™). (7.10)

L1f the turbulent region has a mean velocity, our discussion refers to a frame of reference moving with
the same velocity.



FLOW-INDUCED SOUND AND INSTABILITIES 209

After multiplication by 47 r2, we obtain the corresponding expression for the radi-
ated power

Wy ox M (pU3/2) a*) o« US. (7.11)

The second factor pU”3a/2 = (pU"%a>/2)(U’ /a) can be interpreted as the av-
erage rate of building the kinetic energy of an eddy, o«c pU"%a®/2, a/U’ being the
period. We can also interpret this term as the power carried by the kinetic energy
flux pU'3/3 through an area occupied by one eddy.

The first factor in Eq. 7.11, M /5 can then be interpreted as the fraction of the
kinetic energy of the eddy that is converted into sound (‘efficiency’ of conversion).
The acoustic power is proportional to the eighth power of the velocity fluctuation.
Assuming that the different eddies in the turbulent region are uncorrelated, their
individual power contributions to the sound field add and the total power obtained
by an integration over the turbulent region will be proportional to U’S. This velocity
dependence was first obtained by Lighthill from a detailed analysis based on the fluid
equations in which the Reynolds stress was included in the momentum equation; it
is a seminal contribution to this field.2

An interesting analogy to this 8th power law involves the electromagnetic (heat)
radiation from a blackbody. Itisknown from Planck’s radiation law that the total power
of electromagnetic radiation from the thermal molecular motion is proportional to T4,
where T is the absolute temperature. The temperature, in turn, is a measure of the
average molecular kinetic energy of the thermal motion, expressed by m W) =kT/2
per degree of freedom, where k is the Boltzmann constant. Consequently T* can
be expressed as being proportional to u8, where u is the rms value of the molecular
velocity. In this sense, the black body radiation, like sound from turbulence, is also
an Sth power law.

7.3.3 Jet Noise

Consider a jet being discharged from a nozzle at speed U. It carries a kinetic energy
ApU?3 /2 per second, where A is the area of the nozzle. The velocity fluctuations U’ in
the jet will be proportional to the mean velocity U, U’/ U typically being of the order
of a few percent. Thus, on the basis of the radiation from a single eddy (quadrupole)
in Eq. 7.11, the acoustic power radiated by the jet, as a first approximation, is expected
to be of the form

M=CM° (A,OUS/Z) o U®  (subsonic), (7.12)
where C is a constant. For a circular subsonic air jet at 70°F, the constant has been
found experimentally to be C ~ 10~4.

Jet Noise Spectrum

Measurements of the frequency spectrum of the noise from circular subsonic jets
indicate that the average spectrum density (over all directions of radiation) can be

2M. J. Lighthill, Proc. Roy. Soc. (London) A222, 1 (1954).
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expressed as

E(f)/E(fo) = F(f/fo), (7.13)

where E(fo) is the peak value of the spectrum density and fp a characteristic fre-
quency given by
fo~ 0.15U/D. (7.14)

As shown in Eq. 7.16, E(fo) &~ I1/3.1, where IT is the total acoustic power from
the jet.

On the basis of measured jet noise spectra3 we propose, with & = f/fo, the
following empirical (smoothened) spectrum function®

Empirical noise spectrum of subsonic jet (Fig. 7.3) (7.15)
(E()/E(fo) = F&) = i

[f: Frequency. fo: See Eq. 7.14. U: Flow speed. d: Nozzle diameter. E(f):
Spectrum density. E(fo): See Egs. 7.13 and 7.16. Total power and E(fy): See
Eq. 7.16).

The total radiated power is obtained from

n=/ Hﬁﬁzﬂm/ F(&)d& ~ 3.1 Eq fo. (7.16)
0 0

The last step is a result of a numerical integration based on the spectrum function
in Egs. 7.13 and 9.8. With W being proportional to US, as given in Eq. 7.12 and with
fo o< U, it follows that the maximum spectrum density depends on the velocity as
E(fo) o< U. Furthermore, the spectral function 9.8 shows that at low frequencies,
f << fo, the Mach number dependence of the spectrum density is ~# M” and for
f >> fo,itis & M%5. At the peak frequency, the dependence is M7 and for the
overall power it is o« M 8

In other words, the 8th power law applies only to the total power and generally
not to the power in a finite frequency band. For example, in an experimental study
of the spectra of fricative speech sounds, a Mach number dependence of ~ M 5
has been reported. In this experiment, however, the peak frequency fy was very
high, and the analyzing equipment covered only the portion of the spectrum below
fo. Under these conditions, the experimental result is consistent with our predicted
Mach number dependence.

Jet spectrum density functions are shown in Fig. 7.3 for a subsonic air jet for Mach
numbers M = 1, 0.9, and 0.8. The frequency variable is normalized with respect
to frequency at fo = 0.15¢/D at the peak of the M = 1 spectrum and its spectrum
density peak value Eg = W/(3.1 fo) (see Eq. 7.16) is used for the normalization of
the spectrum densities.

3H.E. von Gierke, Handbook of Noise Control, edited by C.M. Harris (McGraw-Hill Book Company,
Inc., New York, 1957) Chapter 33, p 35.

4Uno Ingard, Attenuation and regeneration of sound in jet diffusers, JASA, Vol. 31, pp 1202-1212,
1959.
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Figure 7.3: The power spectrum function E(f)/Eq of the noise from a subsonic air jet vs
the normalized frequency f/fy for Mach numbers 1, 0.9, and 0.8 of the jet. (c: sound speed,
D: nozzle diameter.) fo = 0.15¢/D is the frequency of the maximum at the spectrum peak
for M = 0 and Ey = I1/fj is the corresponding maximum spectrum density and IT the total
power output for M = 1. (Eq. 9.8)

The shapes of the octave band and one-third octave band spectra will be altered to
some extent because the band width increases with frequency. For details, we refer
to Problem 5.

As the Mach number decreases, the spectra are displaced toward lower frequencies
as the peak value decreases, as shown. As a result, the curves come closer together
at low frequencies and further apart at high. The corresponding Mach number
dependencies, M 5 and M5 in these regions are indicated together with the M 7
dependence of the peak spectrum density. For example, a decrease from M = 1 to
M = 0.8 leads to reductions in the spectrum density levels in these regions by 4.8,
9.2, and 6.8 dB, respectively, as the overall power is reduced by 7.8 dB, corresponding
toits M S-dependence.

Because of the strong velocity dependence of the emitted noise from a jet, a reduc-
tion of the exit velocity by means of a diffuser would be an effective means of noise
reduction if flow separation in the diffuser could be avoided. For a given mass flow,
this approach reduces the thrust of the jet and cannot be used in propulsion.

The fact that the frequency of the peak value of the spectrum depends on the
diameter of the jet has been used in order to shift the jet noise from low to high
frequencies. The motivation for such a shift is that low frequencies attenuate less
than the highs in propagation through the atmosphere, as discussed in Chapter 9.
Multitube nozzles have been used on jet engines to accomplish this frequency shift.
Actually, for ground-based jet engines, such a reduction can be achieved by means
of a lossy diffuser such as a perforated cone which disperses the flow to reduce the
average exit velocity. Such basket diffusers have been used in ground run-up tests of
aircraft jet engines.
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Comment. The ‘acoustic efficiency’ of a subsonic jet expressed by the factor ~
1074 M5, i.e., the fraction of the kinetic energy of the jet converted into sound, cannot
be expected to be valid for arbitrarily large values of the Mach number. After all, the
acoustic power cannot exceed the mechanical power (which is proportional to M 3) of
a jet and there is an obvious upper limit to M in the M® law given approximately by
107*M5 = 1,ie, M ~ 6.3. Actually, when M exceeds 1, experiments show that the
Mach number dependence of the efficiency gradually approaches a constant, typically
of the order of a tenth of a percent, representing the fraction of the mechanical energy
converted into sound. The problem is more complex than that, however, since in the
supersonic regime, intense pure tones can be generated as a result of instabilities in
the jet, such as shock cell oscillations.

7.3.4 Problems

1. Sound from a sphere in turbulent flow

At sufficiently high Reynolds numbers, typically R > 105, (R = Ua /v, U, for velocity,
a, radius, and v, kinematic viscosity ~ 0.15 for air), it is a good approximation to put
the drag force on a sphere equal to ApU 2 /2, where A = wa? and a, the radius of
the sphere. In a frequency band centered around 50 Hz, the measured rms value of the
velocity fluctuation is 0.1 percent of the mean flow velocity. The Mach number of the
mean flow is 0.5. The radius of the sphere is 1 cm.

(a) What is the Reynolds number (based on the diameter) of the flow?

(b) What is the rms sound pressure in the same frequency band centered at 50 Hz and
the corresponding sound pressure level at a distance of 1 m from the center of the sphere
and an angle of 60 degrees from the flow direction?

(c) What is the radiated acoustic power in watts?

2. Low-frequency sound radiation from an aeroplane in bumpy flight

The fluctuations in the lift force on an aeroplane in turbulent flow might have an am-
plitude equal to the entire weight of the plane and the period of the corresponding
oscillations typically might be of the order of 1's.

(a) Treat the plane as a point force and calculate the acoustic power generated at a
frequency of 1 Hz by the fluctuating lift force.

(b) Show that the integrated near field pressure over ground equals the weight of the
plane.

3. Sound radiation from a subsonic jet

Air is discharged from a nozzle at a Mach number M = 1. The diameter of the nozzle
is D = 0.5 m. The air density is p ~ 1.3 kg/m3 and the sound speed ¢ = 340 m/s.

(a) Determine the total acoustic power emitted by the jet.

(b) What is the corresponding average sound pressure level about the jet at a distance
of 50 m?

(c) What is the maximum value of the power spectrum level?

(d) What is the change in the level of the emitted sound at a frequency f >> fy fora
10 percent change of the thrust of the engine?

4. Jet noise reduction trough spectrum shift

Consider the jet in Problem 3. If the nozzle is replaced by ten parallel tubes creating
ten parallel jets with the same total area and thrust, what would be the reduction of the
sound pressure level at a frequency 100 Hz?
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5. Octave and 1/3 octave band jet noise spectra

(a) Let the center frequencies (on a log scale) of the octave band jet noise spectrum be
fn = fo2", where fy = 0.15U/d is the frequency at the peak value of the spectrum
density and » an integer, positive, negative, or zero. The nth band covers the frequency
range from f,,(1/ V2 to fu+/2). Caleulate the octave band power levels for n = —5
to n = 5 with reference to the total power level and check if the following values are
correct, -38.4, 29,5, -20.6, -12.7, -5.0, -1.6, -0.43, -1.9, -5.2, -9.2, -13.5 dB.

(b) For the 1/3 octave bands the center frequencies are given by f, = f, 2/3 and the
band covers the frequency range from f, 271/6 to f, 21/6. Calculate the third octave
band levels with respect to the total power level forn = —10 to n = 10 and check if the
following values are correct, -29.1, -26.2, -23.4, -20.6, -17.9, -15.4, -13.1, -11, -9.1, -7.6,
6.4,-5.6,-52.-52.-5.4.-5.9. -6.7, -7.7. -8.8, -10, -11.3.

7.4 ‘Spontaneous’ Instabilities

7.4.1 Single Shear Layer

A single shear layer is unstable as a result of the interaction with itself, so to speak,
and this instability progresses into turbulence. The sheet can be thought of as a
continuous uniform distribution of line vortices. If they are all aligned, they remain
in the sheet but if a fluctuation brings one line vortex out of the plane of the sheet,
its flow field will affect the position of the other line vortices so that initially, in the
linear regime of perturbation, the displacement out of the sheet grows exponentially
with time. As a result, the sheet breaks up and sound will be emitted in the process.
The time dependence of the motion of the sheet can be followed numerically on
a computer. One might refer to this instability as a spontaneous creation of vortex
sound.

7.4.2 Parallel Shear Layers. Kirman Vortex Street

Similarly, two parallel shear layers are also unstable but now, through the interaction
between the sheets, individual isolated vortices are developed to form a periodic
stable zig-zag pattern, generally known as the Karmédn vortex street. Actually, this
street refers to the wake formed behind a cylinder in a uniform flow field. Initially,
this wake is in the form of parallel vortex sheets which develop into the vortex street
as shown in Fig. 7.4. Unlike the single vortex sheet, the double sheet contains a
characteristic length, the separation d between the sheets (width of the wake), and
there will be a corresponding characteristic frequency of the order of U/d, where U
is the velocity of the incident flow.

Figure 7.4: Karman vortex street (from Milton van Dyke, An Album of Fluid Motion, The
Parabolic Press, Stanford, 1982. (courtesy of Professor Van Dyke).



214 ACOUSTICS

The number of vortices formed per second is found to be

Kdrmdn vortex; shedding frequency (Fig. 7.4) (7.17)
fu=S% '

[U: Free stream flow speed. d: Cylinder diameter (or width of wake for any blunt
body). S: Strouhal number (~ 0.2 for cylinder)].

The Karmén vortex sheet occurs only at Reynolds numbers in the approximate
range between 300 and 10° in which the Strouhal number is found experimentally to
be ~ 0.2. Below 300, the flow is essentially laminar, and above 10°, the vortices are
not well correlated along the length of the cylinder and the wake quickly develops
into a fully turbulent flow. However, the broad band turbulent spectrum has a peak
close to fy. The noise spectrum of a subsonic turbulent jet with a diameter d and
velocity U turns out also to have its maximum approximately at 0.15 U /d, as already
discussed in Section 7.3.3, Eq. 7.14.

The drift velocity of the vortices in the wake can be shown to be ~ 0.7U so that
the spacing between successive vortices will be ~ 0.7U /fy ~ 3.5d.

The frequency fy in Eq. 7.17 can be used for a blunt body in general, not necessarily
a cylinder, if d is taken to be the width of the wake. For a cylinder, the width is about
the same as the diameter of the cylinder, but for a flat plate, it is wider than the plate.
For an airfoil, the width of the wake is about the same as the thickness of the trailing
edge, and the vortex shedding frequency can be quite high. With a thickness of the
trailing edge of 0.5 cm and a flow Mach number of 0.8 the frequency is ~ 10.9 kHz.

The Interaction Force

The force on the cylinder contains both an axial and a transverse component. The
axial is dominated by a time independent part corresponding to a drag coefficient
which can be shown to be C ~ 1.5d per unit length of the cylinder.

The transverse force is oscillatory. As a vortex is shed on one side of the cylinder, a
counter circulation is induced to conserve angular momentum, as shown schematically
in Fig. 7.5. It is well known that when a mean flow is superimposed on a circulation,
there will be a transverse force on the object (compare the lift on a wing) which in the
figure will be directed downwards (the superposition of velocities results in higher
velocity and lower pressure below the cylinder than above). The reaction force on the
air will be upwards so that the sound generated by the vortex shedding will be positive
above the cylinder at the instant shown in the figure. Since the vortex shedding is

- -~
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Figure 7.5: Counter circulation about a cylinder resulting from vortex shedding and the
corresponding periodic transverse force.
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Figure 7.6: Concerning the degree of correlation of vortex shedding along a cylinder.

periodic, moving from one side of the cylinder to the other, sound will be generated
at the same frequency.

The transverse force amplitude per unit length has been estimated to be f;
6d(pU?/2). Experimental values have been found to be considerably lower
0.5d(pU?/2). One reason for the discrepancy is presumably a relatively poor cor-
relation between the vortex shedding along the length of the cylinder, as illustrated
schematically in Fig. 7.6. Since the vortices shed out of phase tend to cancel each
other’s contribution to the transverse force on the cylinder, the resulting sound emis-
sion is normally quite weak. Typically, the correlation may extend over 4 to 5 diameters
of the cylinder, as shown schematically in Fig. 7.6, where A indicates qualitatively the
correlation length. This length decreases with with increasing degree of turbulence
in the incident flow.

oA
o

If the cylinder has a transverse resonance which is the same (or nearly so) as the
forcing frequency, the oscillation amplitude can be quite large, not only because of the
resonance per se, but because the motion of the cylinder apparently has a tendency
to increase the correlation length of the vortices along the cylinder. We shall return
to this question in the next section.

The vortex tone can be reduced and even eliminated by substantially reducing the
correlation length by making the surface of the cylinder irregular. This can be done,
for example, by spiraling a wire around the cylinder. The ‘singing’ of Pitot tubes in a
wind tunnel is often eliminated in this manner. Similarly, the periodic wake behind
(tall) chimneys can be eliminated by an helix of protruding bricks around the chimney.
Another method (usually more complicated to implement) is to have a fin applied on
the downstream side of the cylinder that separates the vortex sheets and prevents
coupling between them.

7.4.3 Flow Damping

The interaction of flow not only can lead to an instability and excitation of vibrations
of a mechanical oscillator but it can also produce damping. We refer to Section 10.3.2
for an example, demonstration, and analysis of this effect.
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7.5 ‘Stimulated’ Flow Instabilities, a Classification

The sound emitted by the vortex shedding of a cylinder, often called the Aeolian tone,
is generally quite weak. However, if this instability is stimulated through feedback
from a mechanical or acoustic resonator, the intensity can be considerably enhanced.
This is but one example of many in which feedback occurs. The instabilities which
will be considered in the remainder of this chapter are the flow-induced instabilities
referred to in Fig. 7.7. In these examples, there is at least one of the interactions
shown between characteristic modes of motion of flow, structures, and sound and
they have been termed “flutter, flute,” and ‘valve’ instabilities.

Flow-induced instabilities

Excitation of \ Modulation of - Excitation of
structural mode flow 4 acoustic modes |
~  “Flutter” [ [ s “Flute’’

) st “Valve" |

.

Figure 7.7: A classification of flow induced instabilities.

To these should be added heat driven instabilities. They are frequently encountered
in combustion chambers where acoustic modes of the chamber can stimulate the rate
of heat release. Another example is the old Rijke tube in which the heat transfer
from a heated screen is modulated by acoustic pipe modes. Instabilities in weakly
ionized gases is still another example in which the heat transfer from the electrons
to the neutral gas component is modulated by acoustic modes in the gas. Another
class of instabilities are driven by friction, as in the violin, the squeal of tires, hinges,
brakes, and the chalk on the black board. They are in a sense similar to the flute
instabilities where the resonances now are mechanical rather than acoustical and the
friction force, like the flow, can provide either positive or negative damping.

7.6 Flutter; Mechanically Stimulated Flow
Interaction

7.6.1 Karman Vortex Street

In what we have referred to as flutter instability, fluid flow interacts with an elastic
body in such a way that a displacement or deformation of the body alters the fluid-flow
interaction to promote or stimulate the displacement and make it grow. We restrict
the discussion to instabilities in which both the fluid and the structures individually
have characteristic modes and frequencies of motion.

For example, in the periodic shedding of vortices by a (rigid) cylinder, the charac-
teristic frequency or mode of spontaneous oscillations of the flow itself arises from the
instability of two parallel vortex sheets in the wake of the cylinder and the frequency
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is known to be fy &~ 0.2U/d, as already indicated (Eq. 7.17). If the cylinder has a
transverse vibrational resonance with a frequency equal to (or close to) that of the
vortex shedding, the cylinder will be excited at resonance by the flow. The motion of
the cylinder then in turn is likely to affect the vortex shedding and the amplitude of the
cylinder and the emitted sound can then be considerably increased. The stimulation
by the vibration to a great extent apparently can cause an increase in the correlation
of the vortex shedding along the cylinder so that the elementary reaction forces on

the cylinder will be in phase (see Fig. 7.6).

7.6.2 Instability of a Cylinder in Nonuniform Flow

A cylinder in a nonuniform flow, as indicated schematically in the Fig. 7.8, can be
driven in oscillatory motion by the flow without the presence of a Kdrman vortex
street, as follows.

P

Figure 7.8: Oscillations of a cylinder driven by nonuniform flow.

The cylinder is anchored at both ends, at z = 0 and z = L; typically, it could be a
tube in aheat exchanger. Itislocated in a nonuniform flow with the velocity increasing
from left to right, as shown. Due to the turbulence in the flow, there will always be
some forced lateral oscillations of the cylinder. When it is displaced to the right, the
drag force on the tube increases and the tube is forced into a swirling mode of motion.
As it returns on the left side along the circular path, it encounters a drag force in the
opposite direction but it is smaller than the force on the right. When the tube again
moves into the flow on the right the process is repeated. Consequently, there will
be a net energy transfer to the cylinder in one cycle. As a result, the amplitude of
the swirling motion increases as will the energy transfer per cycle. This leads to an
instability which we can analyze as follows.

The radius of the swirling motion (a superposition of a vertical and horizontal
harmonic motion) by r(z,t), where z is the coordinate along the cylinder. The
z-dependence is the same as that of the fundamental oscillatory mode of the cylin-
der, r(z,1) = |r(t)|sin(kz), where k = w/v and v the bending wave speed and
|r(#)] is the amplitude at z = L/2. The excursion in the x- and y-directions are
&(z,1) =r(z, 1) coswt and n(z, t) = r(z.t) sin(wt). If the relative growth of  is small
in one period of swirling, the velocity in the y-direction is

n(z, 1) = r(z, t)w cos(wt). (7.18)

The steady flow velocity increases with x as shown schematically in the figure but
is assumed independent of z. We place x = 0 at the equilibrium position of the
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cylinder. The flow velocity at the displaced position & of the cylinder is then
U
UG~ UO) + =8+ (7.19)

The drag force per unit length of the cylinder is then of the form
) 5 WU AU,
Fy(&)=CpDU()" ~ CpD |U0)” + 2U(0)§ &+ (gf) ) (7.20)

where C is a drag coefficient and D the cylinder diameter.

The power transferred to the cylinder per unit length is 7). When thisis integrated
over one period, only the second term in Eq. 7.20 contributes and we get the average
rate of transfer of energy in one period. We also have to integrate over the length of the
cylinder which contributes the factor L/2. The energy of the cylinder which equals
the maximum kinetic energy, integrated over its length, is E = (M /2)0%|r (1) /2,
where M is the total mass of the cylinder. It follows then from Egs. 7.18 and 7.20
that

dE/dt = oE
a = (CpDL)[U(0) V]2
E — E(O)e, (7.21)

In the absence of damping, the oscillation grows exponentially with time. There
is always some energy E (0) initially because of the lateral oscillations caused by the
turbulence in the flow. If damping is present and in the absence of flow the average
energy loss per cycle would be BE, say. In that case, the exponential growth would
not occur unless o > B.

We note that the cylinder gets more unstable the lower the resonance frequency w.
As was discussed in Chapter 4, the wave speed of a bending wave is proportional to
Jo. The fundamental resonance frequency is determined by kL = (w/vp)L = 7.
With vy, being proportional to /o it follows that @ o 1/L?. This means (see Eq.7.21)
that for a given material, the growth rate coefficient o will be proportional to L3, Thus,
one obvious way to stabilization is to support a long cylinder at several positions along
its length to reduce L.

7.7 Flute Instabilities; Acoustically Stimulated
Vortex Shedding

7.71 Cylinder in a Flow Duct. Heat Exchangers

Acoustic stimulation of vortex shedding such as in the vortex street behind a cylinder
can enhance the sound emission considerably in much the same way as in an optical
laser. It is the mechanism involved in many musical wind instruments. The vortex
sheet is then stimulated by the sound in an acoustic resonator excited by the flow, as
indicated by the feed back loop in Fig. 7.7. The instability occurs when the vortex
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Figure 7.9: Acoustically stimulated vortex shedding from a cylinder in a duct with the pressure
and velocity distribution in the fundamental acoustic transverse mode in the duct.

frequency and the acoustic resonance frequency are the same (or nearly so). A par-
ticular example will be discussed shortly which involves the periodic vortex shedding
from a cylinder stimulated by the acoustic modes in a duct. There are many other
examples of this type of instability, which will be considered also.

The characteristic feature of this instability is that, unlike the flutter instability,
it is affected by temperature. This arises because of the JT -dependence of the
sound speed and hence the acoustic resonance frequencies which must equal the
vortex frequency for the instability to occur” The knowledge of the temperature
dependence of an instability is a useful aid in diagnosing the nature of the instability.
It indicates that an acoustic resonator and feedback from it are likely to be involved in
the process. As for the mechanically stimulated vortex, a likely reason for the increase
in the force and sound emission is the increase in the correlation length of the vortices
along the cylinder.

As an example, consider a cylinder of diameter d mounted across a rectangular
duct perpendicular to the axis, as indicated in Fig. 7.9. The width of the duct is D.
If the flow velocity in the duct is U, the frequency of vortex shedding at the cylinder
will be fy ~ 0.2U/d, as explained earlier. If this frequency coincides with one of
the acoustic (transverse) resonances of the duct, f, = nc/2D, where c is the sound
speed and n an integer, resonant self-sustained stimulated vortex shedding can occur.
In many respects, this is analogous to the stimulated emission of light in a laser with
the duct walls representing the mirrors in the optical cavity.

Equating the vortex frequency and the frequency of the nth transverse mode in
the duct (the first mode occurring when the duct width is half a wavelength), i.e.,
0.2U/d = nc/2D, yields the condition

U d
M=—=25n— n=1,23..). (7.22)
c D

It is assumed that the cylinder is not placed in a velocity node of the sound wave.
If the cylinder is located at the center of the duct, only modes for odd values of n will
be excited.

5Since the vortex frequency is practically independent of the Reynolds number, the temperature de-
pendence of the kinematic viscosity can be neglected.
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Example, Heat Exchangers

A heat exchanger often consists of an array of parallel pipes perpendicular to the axis
of arectangular duct carrying flow. Due to the coupling between a transverse acoustic
duct mode (usually the fundamental) and the vortex shedding from the pipes, a very
high sound pressure amplitude can result if the vortex shedding frequency is close
to the acoustic mode frequency. The amplitudes can be so large that the oscillatory
stresses produced in pipes and duct walls can lead to acoustic fatigue failure.®

The simplest means of eliminating the instability in the heat exchanger is to intro-
duce a partition wall in the center of the duct which cuts the transverse dimension in
half and doubles the acoustic mode frequency. This is usually sufficient to bring the
acoustic frequency away from the vortex frequency for the flow velocities encoun-
tered.

Feedback oscillations of the heat exchanger type are frequently encountered in
many different contexts. One example involved an exhaust stack of a jet engine test
cell. A number of parallel rods had been installed between two opposite walls in
the rectangular exhaust stack to reduce wall vibrations. As it turned out, at a certain
operating power of the jet engine, in that case 60 percent of full power, the frequency
of the vortex shedding frequency of the rods coincided with the first transverse mode
of the exhaust stack and the resulting oscillation produced a tone which could be
heard several miles away. This environmental noise problem caused the test facility
to be shut down.

An interesting aspect of this example was that the amplitude of the sound varied
periodically with time at a period of about a second or two. In some manner, the
instability shut itself off at a certain amplitude and then started again. Nonlinear
damping or an amplitude dependent flow resistance in the duct could have been the
reason. In the latter case, there would be a reduction of the mean flow and the vortex
frequency in the duct with increasing amplitude thus removing this frequency from
the coincidence with the acoustic mode frequency and shutting off the instability.
The pressure drop then would decrease and the mean flow velocity would increase
again to its original value to reestablish the vortex frequency and the instability. To
eliminate the tone in this example, the rods were cut out and the walls stiffened by
outside reinforcement.

The same type of feedback mechanism applies also in a circular duct with one or
more radial rods. The feedback now results from the excitation of the circumferential
acoustic modes in the duct, the first occurring at a frequency ~ 1.7¢/D, where c is
the sound speed and D the duct diameter. At one time it was feared that the guide
vanes in a fan duct could give rise to such tones.

In regard to heat exchangers there is good reason to suggest that the instability in
Section 7.6.2 is a likely cause of observed pipe failures. It appears that pipes close to
a flow inlet are vulnerable. In this region, the flow is apt to be nonuniform which is
the required condition for the instability in Section 7.6.2 to occur.

6 Acoustic fatigue failure is similar to the well-known effect of breaking a metal wire by bending it back
and forth a (large) number of times. If the stress exceeds a critical value, failure results after a certain
number of cycles which depends on the stress.
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7.7.2 Pipe and Orifice Tones

The flow through a circular orifice separates at the entrance to the orifice and forms
a vortex sheet with circular symmetry. Like the two parallel shear layers behind a
blunt body, this sheet also can form periodic vortices which now takes the form of
rings with a characteristic frequency proportional to the flow velocity, fy = SUy/D’,
where D' is some characteristic length, a combination of the orifice diameter D and
the length Lg of the orifice, and S is a constant. By analogy with the parallel vortex
sheet instability, D" should be a measure of the separation of interacting vortex sheets,
and, as a first approximation at least for sufficiently short lengths of the orifice, we shall
assume here that D" = D. The value of the constant S, according to our experiments,
is approximately 0.5.

If Ly is considerably larger than D, the influence of L cannot be ignored, however,
since experiments indicate that the orifice whistle does not seem to occur when L
is greater than ~ 4D. An explanation might be that the vena contracta’ then falls
well inside the orifice and as the flow expands, it will strike the wall of the orifice and
possibly ruin the coherence of the sheet oscillations.

Even for small values of Lo, it has an effect on the instability, albeit indirectly, since
with Lo less than ~ D /4, flow-induced instability does not seem to occur. A likely
reason is that the acoustic frequency and the flow velocity are then so high that the
acoustic radiation resistance and the flow-induced resistance (see Chapter 10) prevent
the instability from developing.

The orifice shown in Fig. 7.10 is located in a pipe and if the frequency of any of
the modes of this system is sufficiently close to the vortex frequency, acoustically
stimulated self-sustained oscillations can occur. Only axial modes will be considered
here. The lowest frequency is approximately that of an open-ended pipe with a
wavelength approximately twice the length of the pipe. The high frequency end
of the spectrum starts with the first mode of the orifice itself with a wavelength
approximately twice the acoustic thickness L(, & Lo + 8 of the orifice plate, where Lg
is the physical orifice length, § ~ (1 — ¢)0.85D, the two-sided end correction, and
o, the ratio of the orifice area and the pipe area. In this high-frequency regime, the
orifice modes are essentially decoupled from the pipe modes but at lower frequencies.
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Figure 7.10: Flow excitation of orifice and pipe tones.

"The area of the separated flow (jet) in the orifice contracts to a minimum, the vena contracta, and then
expands again.
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The presence of the orifice will affect the frequencies of the pipe modes. Instead of
a pipe, any other resonator will produce pipe tones such as a Helmholtz resonator
with flow through it, as will be discussed in an example below. The simplest example,
familiar to all, is the mouth whistle.®

If the characteristic vortex frequency is denoted fyy = SUy/D, the flow velocity
at which an acoustic mode of frequency f, can be stimulated by the flow into a self-
sustained oscillation is given by fu ~ fu = ¢/Aq, ie., My = Up/c = D/(Siq). The
lowest pipe mode has a wavelength A, ~ 2L ,, where L, is the pipe length, and with
D/L, << 1,theflowvelocity, frequency, and sound intensity, will be correspondingly
small. However, in some applications involving perforated plates containing a large
number of orifices, the pipe tones can be quite intense.

As the flow speed increases, higher order modes of the pipe system will be excited
until the pure orifice mode is reached. With the acoustic length of the orifice being
Ly, as given above, the frequency of the lowest mode is f, = (¢/2L")(1 — Mg),
and the overtones frequencies are f, = nfi, where the factor 1 — Mg is due to the
wave speeds in the upstream and downstream directions being ¢ — Uy and ¢ + U,
respectively (see transmission matrix of a pipe with flow in Section 4.4). The critical
flow Mach number for the lowest orifice tone follows from fy = f;, i.e., from the
equation Mo ~ (D/2L{S)(1 — Mg). For example, with § & 0.5 and D = L, we get
My ~ 0.44.

Extensive measurements have shown that the Mach numbers and the correspond-
ing frequencies indeed cluster around the predicted values. As a rule of thumb,
the excitation of intense orifice tones usually can be expected to occur in the Mach
number range between 0.25 and 0.5.

The conditions for the excitation of a higher orifice mode is obtained in an analogous
manner. The vortex shedding, although periodic, is not harmonic, and overtones of
the fy exist and can be involved in the stimulation of acoustic modes.

Acoustic Whistle Efficiency

In experiments with an orifice with a diameter D = 2rp = 0.5" and a thickness
Lo = 0.5", the sound pressure level in free space at a distance » = 100 cm from the
orifice was found to have a maximum value of 115 dB, obtained when the pressure
drop across the orifice was & 0.13 atm, corresponding to a Mach number of ~ 0.44
in the orifice. (An orifice with D & L seems to give the highest intensity.)

To determine the corresponding acoustic efficiency of the orifice, defined as the
ratio of the radiated acoustic power and the flow losses, we express the latter as
Wy~ ApU3/2 = Ay P)2Mg/2pc,where we have treated the flow as incompressible
and where P = pc?/y is the static pressure, My = Up/c,and A = nrg.

On the assumption of an omni-direction source, the acoustic power radiated into
free field half-space can be written W, = 2nr?p?/pe, where p is the rms value of
the sound pressure at the distance r from the source. The acoustic efficient is then
Na = Wg/W, = 4(r/r0)2(p/P)2/(y2Mg). The observed sound pressure level of

8Speech production is different. Here the time varying acoustic modes of the vocal tract are excited
by a periodic pulsation of air through the glottis.
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115 dB corresponds to p/ P ~ 10~*. Then, with r = 100 cm, rg = 0.64 cm, y = 1.4,
and My = 0.44, we get n, ~ 6 - 1073,

If the orifice is placed in a duct as in Fig. 7.10, simulating a valve, for example, we
can estimate the sound pressure level in the pipe.

Elimination of Orifice/Pipe Tones

The results given above express only necessary conditions for the occurrence of the
orifice tones. Other factors, such as the uniformity of the shear layer at the entrance
and flow-induced sound absorption (see Chapter 10) at the exit end are also important.
At Mach numbers above 0.5, the latter becomes so large as to prevent resonances
from occurring. This can readily be demonstrated by exciting an open-ended pipe
by random noise from a source outside and measuring the response by a microphone
placed at the center of the pipe. The flow through the pipe can be obtained by
connecting the pipe to a plenum chamber which is connected to a pump. With the
microphone placed at the center of the duct and with no flow through the duct, the
spectrum obtained clearly show the odd number duct modes resonances as narrow
spikes. As the flow speed is increased, the resonances are broadened and at a Mach
number of ~ 0.5, they are essentially gone. (No organ music would be possible with
a Mach number above 0.5 in the pipes!)

For a conical orifice, as obtained by countersinking a circular orifice, no whistling
occurs if the apex angle of the countersink is larger than 60 degrees, regardless of the
direction of the flow. If the vortex sheet in the separated flow at the inlet of the orifice
is broken up by making the edge of the orifice irregular, the chance of whistling is
markedly reduced and a simple means of eliminating the